Research of the Multi Parameter Edge of Chaos of Non- linear Simple Pendulum System

By using Melnikov method,the necessary condition of the chaotic motion is established through the calculation of Melnikov function. Furthermore,the edge of chaos of the dynamics system is obtained. The results are verified by the other methods of analysis chaos,such as bifurcation diagram,phase diag...

Full description

Bibliographic Details
Main Authors: He Shanghong, Xie Jin, Cheng Jiefeng, Cui Qingyu
Format: Article
Language:zho
Published: Editorial Office of Journal of Mechanical Transmission 2015-01-01
Series:Jixie chuandong
Online Access:http://www.jxcd.net.cn/thesisDetails#10.16578/j.issn.1004.2539.2015.08.001
_version_ 1797819489813790720
author He Shanghong
Xie Jin
Cheng Jiefeng
Cui Qingyu
author_facet He Shanghong
Xie Jin
Cheng Jiefeng
Cui Qingyu
author_sort He Shanghong
collection DOAJ
description By using Melnikov method,the necessary condition of the chaotic motion is established through the calculation of Melnikov function. Furthermore,the edge of chaos of the dynamics system is obtained. The results are verified by the other methods of analysis chaos,such as bifurcation diagram,phase diagram,time domain waveform,and maximum Lyapunov exponent. It is demonstrated that,by using the obtained results can provide a convenient means to design a nonlinear simple pendulum with periodic motion.
first_indexed 2024-03-13T09:23:42Z
format Article
id doaj.art-e8920ce4614d474fae345345463f04b5
institution Directory Open Access Journal
issn 1004-2539
language zho
last_indexed 2024-03-13T09:23:42Z
publishDate 2015-01-01
publisher Editorial Office of Journal of Mechanical Transmission
record_format Article
series Jixie chuandong
spelling doaj.art-e8920ce4614d474fae345345463f04b52023-05-26T09:39:35ZzhoEditorial Office of Journal of Mechanical TransmissionJixie chuandong1004-25392015-01-01391429918593Research of the Multi Parameter Edge of Chaos of Non- linear Simple Pendulum SystemHe ShanghongXie JinCheng JiefengCui QingyuBy using Melnikov method,the necessary condition of the chaotic motion is established through the calculation of Melnikov function. Furthermore,the edge of chaos of the dynamics system is obtained. The results are verified by the other methods of analysis chaos,such as bifurcation diagram,phase diagram,time domain waveform,and maximum Lyapunov exponent. It is demonstrated that,by using the obtained results can provide a convenient means to design a nonlinear simple pendulum with periodic motion.http://www.jxcd.net.cn/thesisDetails#10.16578/j.issn.1004.2539.2015.08.001
spellingShingle He Shanghong
Xie Jin
Cheng Jiefeng
Cui Qingyu
Research of the Multi Parameter Edge of Chaos of Non- linear Simple Pendulum System
Jixie chuandong
title Research of the Multi Parameter Edge of Chaos of Non- linear Simple Pendulum System
title_full Research of the Multi Parameter Edge of Chaos of Non- linear Simple Pendulum System
title_fullStr Research of the Multi Parameter Edge of Chaos of Non- linear Simple Pendulum System
title_full_unstemmed Research of the Multi Parameter Edge of Chaos of Non- linear Simple Pendulum System
title_short Research of the Multi Parameter Edge of Chaos of Non- linear Simple Pendulum System
title_sort research of the multi parameter edge of chaos of non linear simple pendulum system
url http://www.jxcd.net.cn/thesisDetails#10.16578/j.issn.1004.2539.2015.08.001
work_keys_str_mv AT heshanghong researchofthemultiparameteredgeofchaosofnonlinearsimplependulumsystem
AT xiejin researchofthemultiparameteredgeofchaosofnonlinearsimplependulumsystem
AT chengjiefeng researchofthemultiparameteredgeofchaosofnonlinearsimplependulumsystem
AT cuiqingyu researchofthemultiparameteredgeofchaosofnonlinearsimplependulumsystem