A note on flatness of non separable tangent cone at a barycenter

Given a probability measure $\mathbf{P}$ on an Alexandrov space $S$ with curvature bounded below, we prove that the support of the pushforward of $\mathbf{P}$ on the tangent cone $T_{b^\star }S$ at its (exponential) barycenter $b^\star $ is a subset of a Hilbert space, without separability of the ta...

Full description

Bibliographic Details
Main Author: Le Gouic, Thibaut
Format: Article
Language:English
Published: Académie des sciences 2020-07-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.66/
_version_ 1797651576283725824
author Le Gouic, Thibaut
author_facet Le Gouic, Thibaut
author_sort Le Gouic, Thibaut
collection DOAJ
description Given a probability measure $\mathbf{P}$ on an Alexandrov space $S$ with curvature bounded below, we prove that the support of the pushforward of $\mathbf{P}$ on the tangent cone $T_{b^\star }S$ at its (exponential) barycenter $b^\star $ is a subset of a Hilbert space, without separability of the tangent cone.
first_indexed 2024-03-11T16:17:47Z
format Article
id doaj.art-e8a2e8f3f970403982d8d53894c66ab5
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T16:17:47Z
publishDate 2020-07-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-e8a2e8f3f970403982d8d53894c66ab52023-10-24T14:19:02ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692020-07-01358448949510.5802/crmath.6610.5802/crmath.66A note on flatness of non separable tangent cone at a barycenterLe Gouic, Thibaut0https://orcid.org/0000-0001-6983-2794Massachusetts Institute of Technology, Department of Mathematics and Centrale Marseille, I2M, UMR 7373, CNRS, Aix-Marseille univ., Marseille, 13453, FranceGiven a probability measure $\mathbf{P}$ on an Alexandrov space $S$ with curvature bounded below, we prove that the support of the pushforward of $\mathbf{P}$ on the tangent cone $T_{b^\star }S$ at its (exponential) barycenter $b^\star $ is a subset of a Hilbert space, without separability of the tangent cone.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.66/
spellingShingle Le Gouic, Thibaut
A note on flatness of non separable tangent cone at a barycenter
Comptes Rendus. Mathématique
title A note on flatness of non separable tangent cone at a barycenter
title_full A note on flatness of non separable tangent cone at a barycenter
title_fullStr A note on flatness of non separable tangent cone at a barycenter
title_full_unstemmed A note on flatness of non separable tangent cone at a barycenter
title_short A note on flatness of non separable tangent cone at a barycenter
title_sort note on flatness of non separable tangent cone at a barycenter
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.66/
work_keys_str_mv AT legouicthibaut anoteonflatnessofnonseparabletangentconeatabarycenter
AT legouicthibaut noteonflatnessofnonseparabletangentconeatabarycenter