CDA gene silencing regulated the proliferation and apoptosis of chronic myeloid leukemia K562 cells

Abstract Background As a disease of hematopoietic stem cell, chronic myeloid leukemia (CML) possesses unique biological and clinical features. However, the biologic mechanism underlying its development remains poorly understood. Thus, the objective of the present study is to discuss the effect of cy...

Full description

Bibliographic Details
Main Authors: Xiao-Fang Wei, You-Fan Feng, Qiao-Lin Chen, Qi-Ke Zhang
Format: Article
Language:English
Published: BMC 2018-07-01
Series:Cancer Cell International
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12935-018-0587-y
Description
Summary:Abstract Background As a disease of hematopoietic stem cell, chronic myeloid leukemia (CML) possesses unique biological and clinical features. However, the biologic mechanism underlying its development remains poorly understood. Thus, the objective of the present study is to discuss the effect of cytidine deaminase (CDA) gene silencing on the apoptosis and proliferation of CML K562 cells. Methods CDA mRNA expression was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and enzymatic activity of CDA was measured by a nuclide liquid scintillation method. RT-qPCR and Western blot analysis were used to detect CDA mRNA and protein expression. Cell proliferation, apoptosis and cell cycle were measured by CCK-8 assay and flow cytometry. The expression of proteins relevant to cell proliferation, apoptosis and cell cycle was measured by Western blot analysis. Tumor xenografts were implanted in nude mice to verify the effect of CDA silencing on tumor growth in vivo. Results CML and AL patients showed increased mRNA expression and enzymatic activity of CDA. Compared with the blank group, the mRNA and protein expression of CDA in the shRNA-1 and shRNA-2 groups decreased significantly. As a result, the proliferation of K562 cells was inhibited after CDA silencing and the cells were mainly arrested in S and G2 phases, while the apoptosis rate of these cells was increased. In addition, CDA gene silencing in K562 cells led to down-regulated p-ERK1/2, t-AKT, p-AKT and BCL-2 expression and up-regulated expression of P21, Bax, cleaved caspase-3/total caspase-3 and cleaved PARP/total PARP. Finally, CDA gene silencing inhibited tumor growth. Conclusion Our study demonstrated that CDA gene silencing could inhibit CML cell proliferation and induce cell apoptosis. Therefore, CDA gene silencing may become an effective target for the treatment of leukemia.
ISSN:1475-2867