Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological Indices

Chemical graph theory is a branch of mathematical chemistry which deals with the non-trivial applications of graph theory to solve molecular problems. Graphs containing finite commutative rings also have wide applications in robotics, information and communication theory, elliptic curve cryptography...

Full description

Bibliographic Details
Main Authors: Kashif Elahi, Ali Ahmad, Roslan Hasni
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/6/12/301
_version_ 1819092986391166976
author Kashif Elahi
Ali Ahmad
Roslan Hasni
author_facet Kashif Elahi
Ali Ahmad
Roslan Hasni
author_sort Kashif Elahi
collection DOAJ
description Chemical graph theory is a branch of mathematical chemistry which deals with the non-trivial applications of graph theory to solve molecular problems. Graphs containing finite commutative rings also have wide applications in robotics, information and communication theory, elliptic curve cryptography, physics, and statistics. In this paper we discuss eccentric topological indices of zero divisor graphs of commutative rings <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="double-struck">Z</mi> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> </msub> <mo>&#215;</mo> <msub> <mi mathvariant="double-struck">Z</mi> <mi>q</mi> </msub> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> </semantics> </math> </inline-formula>, and <i>q</i> are primes. To enhance the importance of these indices a construction algorithm is also devised for zero divisor graphs of commutative rings <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="double-struck">Z</mi> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> </msub> <mo>&#215;</mo> <msub> <mi mathvariant="double-struck">Z</mi> <mi>q</mi> </msub> </mrow> </semantics> </math> </inline-formula>.
first_indexed 2024-12-21T23:04:20Z
format Article
id doaj.art-e8bd9b5140df4dc7b9f6cb00d5d1c853
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-21T23:04:20Z
publishDate 2018-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-e8bd9b5140df4dc7b9f6cb00d5d1c8532022-12-21T18:47:14ZengMDPI AGMathematics2227-73902018-12-0161230110.3390/math6120301math6120301Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological IndicesKashif Elahi0Ali Ahmad1Roslan Hasni2Deanship of E-learning and Information Technology, Jazan University, Jazan 45142, Saudi ArabiaCollege of Computer Science and Information Technology, Jazan University, Jazan 45142, Saudi ArabiaDepartment of Mathematics, University Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, MalaysiaChemical graph theory is a branch of mathematical chemistry which deals with the non-trivial applications of graph theory to solve molecular problems. Graphs containing finite commutative rings also have wide applications in robotics, information and communication theory, elliptic curve cryptography, physics, and statistics. In this paper we discuss eccentric topological indices of zero divisor graphs of commutative rings <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="double-struck">Z</mi> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> </msub> <mo>&#215;</mo> <msub> <mi mathvariant="double-struck">Z</mi> <mi>q</mi> </msub> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> </semantics> </math> </inline-formula>, and <i>q</i> are primes. To enhance the importance of these indices a construction algorithm is also devised for zero divisor graphs of commutative rings <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="double-struck">Z</mi> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> </msub> <mo>&#215;</mo> <msub> <mi mathvariant="double-struck">Z</mi> <mi>q</mi> </msub> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/6/12/301topological indexzero divisor graphscommutative ring
spellingShingle Kashif Elahi
Ali Ahmad
Roslan Hasni
Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological Indices
Mathematics
topological index
zero divisor graphs
commutative ring
title Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological Indices
title_full Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological Indices
title_fullStr Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological Indices
title_full_unstemmed Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological Indices
title_short Construction Algorithm for Zero Divisor Graphs of Finite Commutative Rings and Their Vertex-Based Eccentric Topological Indices
title_sort construction algorithm for zero divisor graphs of finite commutative rings and their vertex based eccentric topological indices
topic topological index
zero divisor graphs
commutative ring
url https://www.mdpi.com/2227-7390/6/12/301
work_keys_str_mv AT kashifelahi constructionalgorithmforzerodivisorgraphsoffinitecommutativeringsandtheirvertexbasedeccentrictopologicalindices
AT aliahmad constructionalgorithmforzerodivisorgraphsoffinitecommutativeringsandtheirvertexbasedeccentrictopologicalindices
AT roslanhasni constructionalgorithmforzerodivisorgraphsoffinitecommutativeringsandtheirvertexbasedeccentrictopologicalindices