A Power System Timing Data Recovery Method Based on Improved VMD and Attention Mechanism Bi-Directional CNN-GRU

The temporal data of the power system are expanding with the growth of the power system and the proliferation of automated equipment. However, data loss may arise during the acquisition, measurement, transmission, and storage of temporal data. To address the insufficiency of temporal data in the pow...

Full description

Bibliographic Details
Main Authors: Kangmin Xie, Jichun Liu, Youbo Liu
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/7/1590
Description
Summary:The temporal data of the power system are expanding with the growth of the power system and the proliferation of automated equipment. However, data loss may arise during the acquisition, measurement, transmission, and storage of temporal data. To address the insufficiency of temporal data in the power system, this study proposes a sequence-to-sequence (Seq2Seq) architecture to restore power system temporal data. This architecture comprises a radial convolutional neural unit (CNN) network and a gated recurrent unit (GRU) network. Specifically, to account for the periodicity and volatility of temporal data, VMD is employed to decompose the time series data output into components of different frequencies. CNN is utilized to extract the spatial characteristics of temporal data. At the same time, Seq2Seq is employed to reconstruct each component based on introducing a feature timing and multi-model combination triple attention mechanism. The feature attention mechanism calculates the contribution rate of each feature quantity and independently mines the correlation between the time series data output and each feature value. The temporal attention mechanism autonomously extracts historical–critical moment information. A multi-model combination attention mechanism is introduced, and the missing data repair value is obtained after modeling the combination of data on both sides of the missing data. Recovery experiments are conducted based on actual data, and the method’s effectiveness is verified by comparison with other methods.
ISSN:2079-9292