Drosophila PSI controls circadian period and the phase of circadian behavior under temperature cycle via tim splicing

The Drosophila circadian pacemaker consists of transcriptional feedback loops subjected to post-transcriptional and post-translational regulation. While post-translational regulatory mechanisms have been studied in detail, much less is known about circadian post-transcriptional control. Thus, we tar...

Full description

Bibliographic Details
Main Authors: Lauren E Foley, Jinli Ling, Radhika Joshi, Naveh Evantal, Sebastian Kadener, Patrick Emery
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2019-11-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/50063
Description
Summary:The Drosophila circadian pacemaker consists of transcriptional feedback loops subjected to post-transcriptional and post-translational regulation. While post-translational regulatory mechanisms have been studied in detail, much less is known about circadian post-transcriptional control. Thus, we targeted 364 RNA binding and RNA associated proteins with RNA interference. Among the 43 hits we identified was the alternative splicing regulator P-element somatic inhibitor (PSI). PSI regulates the thermosensitive alternative splicing of timeless (tim), promoting splicing events favored at warm temperature over those increased at cold temperature. Psi downregulation shortens the period of circadian rhythms and advances the phase of circadian behavior under temperature cycle. Interestingly, both phenotypes were suppressed in flies that could produce TIM proteins only from a transgene that cannot form the thermosensitive splicing isoforms. Therefore, we conclude that PSI regulates the period of Drosophila circadian rhythms and circadian behavior phase during temperature cycling through its modulation of the tim splicing pattern.
ISSN:2050-084X