Summary: | Previously, generative adversarial networks (GAN) have been widely applied on super resolution reconstruction (SRR) methods, which turn low-resolution (LR) images into high-resolution (HR) ones. However, as these methods recover high frequency information with what they observed from the other images, they tend to produce artifacts when processing unfamiliar images. Optical satellite remote sensing images are of a far more complicated scene than natural images. Therefore, applying the previous networks on remote sensing images, especially mid-resolution ones, leads to unstable convergence and thus unpleasing artifacts. In this paper, we propose Enlighten-GAN for SRR tasks on large-size optical mid-resolution remote sensing images. Specifically, we design the enlighten blocks to induce network converging to a reliable point, and bring the Self-Supervised Hierarchical Perceptual Loss to attain performance improvement overpassing the other loss functions. Furthermore, limited by memory, large-scale images need to be cropped into patches to get through the network separately. To merge the reconstructed patches into a whole, we employ the internal inconsistency loss and cropping-and-clipping strategy, to avoid the seam line. Experiment results certify that Enlighten-GAN outperforms the state-of-the-art methods in terms of gradient similarity metric (GSM) on mid-resolution Sentinel-2 remote sensing images.
|