Estimating PSNR in High Definition H.264/AVC Video Sequences Using Artificial Neural Networks

The paper presents a video quality metric designed for the H.264/AVC codec. The metric operates directly on the encoded H.264/AVC bit stream, parses the encoding parameters and processes them using an artificial neural network. The network is designed to estimate peak signal-to-noise ratios of the v...

Full description

Bibliographic Details
Main Authors: V. Ricny, M. Slanina
Format: Article
Language:English
Published: Spolecnost pro radioelektronicke inzenyrstvi 2008-09-01
Series:Radioengineering
Subjects:
Online Access:http://www.radioeng.cz/fulltexts/2008/08_03_103_108.pdf
_version_ 1819315733333540864
author V. Ricny
M. Slanina
author_facet V. Ricny
M. Slanina
author_sort V. Ricny
collection DOAJ
description The paper presents a video quality metric designed for the H.264/AVC codec. The metric operates directly on the encoded H.264/AVC bit stream, parses the encoding parameters and processes them using an artificial neural network. The network is designed to estimate peak signal-to-noise ratios of the video sequence frames, thus enabling computation of full reference objective quality metric values without having the undistorted video material prior to encoding for comparison. We present the metric framework and test its performance for LDTV (low definition television) as well as HDTV (high definition television) video material.
first_indexed 2024-12-24T10:04:48Z
format Article
id doaj.art-e8fb5b44b9a449bc844a3fec63253523
institution Directory Open Access Journal
issn 1210-2512
language English
last_indexed 2024-12-24T10:04:48Z
publishDate 2008-09-01
publisher Spolecnost pro radioelektronicke inzenyrstvi
record_format Article
series Radioengineering
spelling doaj.art-e8fb5b44b9a449bc844a3fec632535232022-12-21T17:00:53ZengSpolecnost pro radioelektronicke inzenyrstviRadioengineering1210-25122008-09-01173103108Estimating PSNR in High Definition H.264/AVC Video Sequences Using Artificial Neural NetworksV. RicnyM. SlaninaThe paper presents a video quality metric designed for the H.264/AVC codec. The metric operates directly on the encoded H.264/AVC bit stream, parses the encoding parameters and processes them using an artificial neural network. The network is designed to estimate peak signal-to-noise ratios of the video sequence frames, thus enabling computation of full reference objective quality metric values without having the undistorted video material prior to encoding for comparison. We present the metric framework and test its performance for LDTV (low definition television) as well as HDTV (high definition television) video material.www.radioeng.cz/fulltexts/2008/08_03_103_108.pdfH.264/AVCvideo qualityobjective quality metricHDTVartificial neural network
spellingShingle V. Ricny
M. Slanina
Estimating PSNR in High Definition H.264/AVC Video Sequences Using Artificial Neural Networks
Radioengineering
H.264/AVC
video quality
objective quality metric
HDTV
artificial neural network
title Estimating PSNR in High Definition H.264/AVC Video Sequences Using Artificial Neural Networks
title_full Estimating PSNR in High Definition H.264/AVC Video Sequences Using Artificial Neural Networks
title_fullStr Estimating PSNR in High Definition H.264/AVC Video Sequences Using Artificial Neural Networks
title_full_unstemmed Estimating PSNR in High Definition H.264/AVC Video Sequences Using Artificial Neural Networks
title_short Estimating PSNR in High Definition H.264/AVC Video Sequences Using Artificial Neural Networks
title_sort estimating psnr in high definition h 264 avc video sequences using artificial neural networks
topic H.264/AVC
video quality
objective quality metric
HDTV
artificial neural network
url http://www.radioeng.cz/fulltexts/2008/08_03_103_108.pdf
work_keys_str_mv AT vricny estimatingpsnrinhighdefinitionh264avcvideosequencesusingartificialneuralnetworks
AT mslanina estimatingpsnrinhighdefinitionh264avcvideosequencesusingartificialneuralnetworks