Existence of entropy solutions of the anisotropic elliptic nonlinear problem with measure data in weighted Sobolev space
This paper is devoted to study the following nonlinear anisotropic elliptic unilateral problem \begin{equation*} \begin{cases} A\,u -\mbox{div}\,\phi(u)=\mu \quad \mbox{in} \qquad \Omega \\ \;u=0 \qquad \mbox{on} \quad \partial \Omega , \end{cases} \end{equation*} where the right hand side $\,\mu\;...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2022-02-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Online Access: | https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/52541 |
Summary: | This paper is devoted to study the following nonlinear anisotropic elliptic unilateral problem
\begin{equation*}
\begin{cases}
A\,u -\mbox{div}\,\phi(u)=\mu \quad \mbox{in} \qquad \Omega \\
\;u=0 \qquad \mbox{on} \quad \partial \Omega ,
\end{cases}
\end{equation*}
where the right hand side $\,\mu\;$ belongs to $\; L^1(\Omega)+ W_{0}^{-1,\overrightarrow{p}'} (\Omega,\ \overrightarrow{\omega}^*)$. The operator $\displaystyle A\,u=-\sum_{i=1}^{N}\partial_{i}\,a_{i}(x,\ u,\ \nabla u)$ is a Leray-Lions anisotropic operator acting from $\; W_{0}^{1,\overrightarrow{p}} (\Omega,\ \overrightarrow{\omega})\;$ into its dual $\; W_{0}^{-1,\overrightarrow{p}'} (\Omega,\ \overrightarrow{\omega}^*)$ and $\phi_{i}\in C^{0}(\mathbb{R},\mathbb{R})$.
|
---|---|
ISSN: | 0037-8712 2175-1188 |