Influence of <i>α</i>-Stable Noise on the Effectiveness of Non-Negative Matrix Factorization—Simulations and Real Data Analysis

Non-negative matrix factorization (NMF) has been used in various applications, including local damage detection in rotating machines. Recent studies highlight the limitations of diagnostic techniques in the presence of non-Gaussian noise. The authors examine the impact of non-Gaussianity levels on t...

Full description

Bibliographic Details
Main Authors: Anna Michalak, Rafał Zdunek, Radosław Zimroz, Agnieszka Wyłomańska
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/13/5/829
_version_ 1797264680279867392
author Anna Michalak
Rafał Zdunek
Radosław Zimroz
Agnieszka Wyłomańska
author_facet Anna Michalak
Rafał Zdunek
Radosław Zimroz
Agnieszka Wyłomańska
author_sort Anna Michalak
collection DOAJ
description Non-negative matrix factorization (NMF) has been used in various applications, including local damage detection in rotating machines. Recent studies highlight the limitations of diagnostic techniques in the presence of non-Gaussian noise. The authors examine the impact of non-Gaussianity levels on the extraction of the signal of interest (SOI). The simple additive model of the signal is proposed: SOI and non-Gaussian noise. As a model of the random component, i.e., noise, a heavy-tailed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable distribution with two important parameters (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>) was proposed. If SOI is masked by noise (controlled by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>), the influence of non-Gaussianity level (controlled by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>) is more critical. We performed an empirical analysis of how these parameters affect SOI extraction effectiveness using NMF. Finally, we applied two NMF algorithms to several (both vibration and acoustic) signals from a machine with faulty bearings at different levels of non-Gaussian disturbances and the obtained results align with the simulations. The main conclusion of this study is that NMF is a very powerful tool for analyzing non-Gaussian data and can provide satisfactory results in a wide range of a non-Gaussian noise levels.
first_indexed 2024-04-25T00:32:45Z
format Article
id doaj.art-e906796088524772a4618b288d0a803c
institution Directory Open Access Journal
issn 2079-9292
language English
last_indexed 2024-04-25T00:32:45Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Electronics
spelling doaj.art-e906796088524772a4618b288d0a803c2024-03-12T16:42:17ZengMDPI AGElectronics2079-92922024-02-0113582910.3390/electronics13050829Influence of <i>α</i>-Stable Noise on the Effectiveness of Non-Negative Matrix Factorization—Simulations and Real Data AnalysisAnna Michalak0Rafał Zdunek1Radosław Zimroz2Agnieszka Wyłomańska3Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15, 50-421 Wroclaw, PolandFaculty of Electronics, Photonics, and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11, 50-372 Wroclaw, PolandFaculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15, 50-421 Wroclaw, PolandFaculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, PolandNon-negative matrix factorization (NMF) has been used in various applications, including local damage detection in rotating machines. Recent studies highlight the limitations of diagnostic techniques in the presence of non-Gaussian noise. The authors examine the impact of non-Gaussianity levels on the extraction of the signal of interest (SOI). The simple additive model of the signal is proposed: SOI and non-Gaussian noise. As a model of the random component, i.e., noise, a heavy-tailed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable distribution with two important parameters (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>) was proposed. If SOI is masked by noise (controlled by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>), the influence of non-Gaussianity level (controlled by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>) is more critical. We performed an empirical analysis of how these parameters affect SOI extraction effectiveness using NMF. Finally, we applied two NMF algorithms to several (both vibration and acoustic) signals from a machine with faulty bearings at different levels of non-Gaussian disturbances and the obtained results align with the simulations. The main conclusion of this study is that NMF is a very powerful tool for analyzing non-Gaussian data and can provide satisfactory results in a wide range of a non-Gaussian noise levels.https://www.mdpi.com/2079-9292/13/5/829NMF spectrogramlocal damage detectionheavy-tailed noiseeffectivenessconstraints
spellingShingle Anna Michalak
Rafał Zdunek
Radosław Zimroz
Agnieszka Wyłomańska
Influence of <i>α</i>-Stable Noise on the Effectiveness of Non-Negative Matrix Factorization—Simulations and Real Data Analysis
Electronics
NMF spectrogram
local damage detection
heavy-tailed noise
effectiveness
constraints
title Influence of <i>α</i>-Stable Noise on the Effectiveness of Non-Negative Matrix Factorization—Simulations and Real Data Analysis
title_full Influence of <i>α</i>-Stable Noise on the Effectiveness of Non-Negative Matrix Factorization—Simulations and Real Data Analysis
title_fullStr Influence of <i>α</i>-Stable Noise on the Effectiveness of Non-Negative Matrix Factorization—Simulations and Real Data Analysis
title_full_unstemmed Influence of <i>α</i>-Stable Noise on the Effectiveness of Non-Negative Matrix Factorization—Simulations and Real Data Analysis
title_short Influence of <i>α</i>-Stable Noise on the Effectiveness of Non-Negative Matrix Factorization—Simulations and Real Data Analysis
title_sort influence of i α i stable noise on the effectiveness of non negative matrix factorization simulations and real data analysis
topic NMF spectrogram
local damage detection
heavy-tailed noise
effectiveness
constraints
url https://www.mdpi.com/2079-9292/13/5/829
work_keys_str_mv AT annamichalak influenceofiaistablenoiseontheeffectivenessofnonnegativematrixfactorizationsimulationsandrealdataanalysis
AT rafałzdunek influenceofiaistablenoiseontheeffectivenessofnonnegativematrixfactorizationsimulationsandrealdataanalysis
AT radosławzimroz influenceofiaistablenoiseontheeffectivenessofnonnegativematrixfactorizationsimulationsandrealdataanalysis
AT agnieszkawyłomanska influenceofiaistablenoiseontheeffectivenessofnonnegativematrixfactorizationsimulationsandrealdataanalysis