An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part II = Application to the ship’s ballast tank

In this study (Part II), the empirical formulation of corrosion model of a ship’s ballast tank was developed to predict nonlinear time-dependent corrosion wastage based on the advanced data processing technique proposed by Part I. The detail on how to propose generalised mathematical formulation of...

Full description

Bibliographic Details
Main Authors: Do Kyun Kim, Hui Ling Lim, Nak-Kyun Cho
Format: Article
Language:English
Published: Elsevier 2020-01-01
Series:International Journal of Naval Architecture and Ocean Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S209267822030025X
Description
Summary:In this study (Part II), the empirical formulation of corrosion model of a ship’s ballast tank was developed to predict nonlinear time-dependent corrosion wastage based on the advanced data processing technique proposed by Part I. The detail on how to propose generalised mathematical formulation of corrosion model was precisely documented in the previous paper (Part I). The statistical scatter of corrosion data at any exposure time was investigated by the refined method and formulated based on a 2-parameter Weibull distribution which selected the best fit PDF. Throughout the nine (9) steps, empirical formulation of the ship’s seawater ballast tank was successfully proposed and four (4) key step results were also obtained. The proposed method in Part I was verified and confirmed by this application of seawater ballast tank, thus making it possible to predict accurate behaviours of nonlinear time-dependent corrosion. Developed procedures and obtained corrosion damage model for ship’s seawater ballast tank can be used for development of engineering software.
ISSN:2092-6782