Radial Basis Function Method for Predicting the Evolution of Aerosol Size Distributions for Coagulation Problems

The dynamic evolution of particle size distributions (PSDs) during coagulation is of great importance in many atmospheric and engineering applications. To date, various numerical methods have been developed for solving the general dynamic equation under different scenarios. In this study, a radial b...

Full description

Bibliographic Details
Main Authors: Kaiyuan Wang, Run Hu, Yuming Xiong, Fei Xie, Suyuan Yu
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/13/11/1895
_version_ 1797465947474231296
author Kaiyuan Wang
Run Hu
Yuming Xiong
Fei Xie
Suyuan Yu
author_facet Kaiyuan Wang
Run Hu
Yuming Xiong
Fei Xie
Suyuan Yu
author_sort Kaiyuan Wang
collection DOAJ
description The dynamic evolution of particle size distributions (PSDs) during coagulation is of great importance in many atmospheric and engineering applications. To date, various numerical methods have been developed for solving the general dynamic equation under different scenarios. In this study, a radial basis function (RBF) method was proposed to solve particle coagulation evolution. This method uses a Gaussian function as the basis function to approximate the size distribution function. The original governing equation was then converted to ordinary differential equations (ODEs), along with numerical quadratures. The RBF method was compared with the analytical solutions and sectional method to validate its accuracy. The comparison results showed that the RBF method provided almost accurate predictions of the PSDs for different coagulation kernels. This method was also verified to be reliable in predicting the self-preserving distributions reached over long periods and for describing the temporal evolution of moments. For multimodal coagulation, the RBF method also accurately predicted the temporal evolution of a bimodal distribution owing to scavenging effects. Moreover, the computational times of the RBF method for these cases were usually of the order of seconds. Thus, the RBF method is verified as a reliable and efficient tool for predicting PSD evolution during coagulation.
first_indexed 2024-03-09T18:28:51Z
format Article
id doaj.art-e925169fc83e4030aa41e6e262e43c6b
institution Directory Open Access Journal
issn 2073-4433
language English
last_indexed 2024-03-09T18:28:51Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Atmosphere
spelling doaj.art-e925169fc83e4030aa41e6e262e43c6b2023-11-24T07:42:33ZengMDPI AGAtmosphere2073-44332022-11-011311189510.3390/atmos13111895Radial Basis Function Method for Predicting the Evolution of Aerosol Size Distributions for Coagulation ProblemsKaiyuan Wang0Run Hu1Yuming Xiong2Fei Xie3Suyuan Yu4School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, ChinaSchool of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, ChinaSmoore International Holdings Ltd., Shenzhen 518102, ChinaSmoore International Holdings Ltd., Shenzhen 518102, ChinaDepartment of Energy and Power Engineering, Tsinghua University, Beijing 100084, ChinaThe dynamic evolution of particle size distributions (PSDs) during coagulation is of great importance in many atmospheric and engineering applications. To date, various numerical methods have been developed for solving the general dynamic equation under different scenarios. In this study, a radial basis function (RBF) method was proposed to solve particle coagulation evolution. This method uses a Gaussian function as the basis function to approximate the size distribution function. The original governing equation was then converted to ordinary differential equations (ODEs), along with numerical quadratures. The RBF method was compared with the analytical solutions and sectional method to validate its accuracy. The comparison results showed that the RBF method provided almost accurate predictions of the PSDs for different coagulation kernels. This method was also verified to be reliable in predicting the self-preserving distributions reached over long periods and for describing the temporal evolution of moments. For multimodal coagulation, the RBF method also accurately predicted the temporal evolution of a bimodal distribution owing to scavenging effects. Moreover, the computational times of the RBF method for these cases were usually of the order of seconds. Thus, the RBF method is verified as a reliable and efficient tool for predicting PSD evolution during coagulation.https://www.mdpi.com/2073-4433/13/11/1895radial basis function methodparticle size distributionpopulation balancecoagulation
spellingShingle Kaiyuan Wang
Run Hu
Yuming Xiong
Fei Xie
Suyuan Yu
Radial Basis Function Method for Predicting the Evolution of Aerosol Size Distributions for Coagulation Problems
Atmosphere
radial basis function method
particle size distribution
population balance
coagulation
title Radial Basis Function Method for Predicting the Evolution of Aerosol Size Distributions for Coagulation Problems
title_full Radial Basis Function Method for Predicting the Evolution of Aerosol Size Distributions for Coagulation Problems
title_fullStr Radial Basis Function Method for Predicting the Evolution of Aerosol Size Distributions for Coagulation Problems
title_full_unstemmed Radial Basis Function Method for Predicting the Evolution of Aerosol Size Distributions for Coagulation Problems
title_short Radial Basis Function Method for Predicting the Evolution of Aerosol Size Distributions for Coagulation Problems
title_sort radial basis function method for predicting the evolution of aerosol size distributions for coagulation problems
topic radial basis function method
particle size distribution
population balance
coagulation
url https://www.mdpi.com/2073-4433/13/11/1895
work_keys_str_mv AT kaiyuanwang radialbasisfunctionmethodforpredictingtheevolutionofaerosolsizedistributionsforcoagulationproblems
AT runhu radialbasisfunctionmethodforpredictingtheevolutionofaerosolsizedistributionsforcoagulationproblems
AT yumingxiong radialbasisfunctionmethodforpredictingtheevolutionofaerosolsizedistributionsforcoagulationproblems
AT feixie radialbasisfunctionmethodforpredictingtheevolutionofaerosolsizedistributionsforcoagulationproblems
AT suyuanyu radialbasisfunctionmethodforpredictingtheevolutionofaerosolsizedistributionsforcoagulationproblems