Boundedness character of a max-type system of difference equations of second order

The boundedness character of positive solutions of the next max-type system of difference equations $$x_{n+1}=\max\left\{A,\frac{y_n^p}{x_{n-1}^q}\right\},\quad y_{n+1}=\max\left\{A,\frac{x_n^p}{y_{n-1}^q}\right\},\quad n\in\mathbb{N}_0,$$ with $\min\{A, p, q\}>0$, is characterized.

Bibliographic Details
Main Authors: Stevo Stevic, Mohammed Alghamdi, Abdullah Alotaibi, N. Shahzad
Format: Article
Language:English
Published: University of Szeged 2014-09-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3150
_version_ 1797830612511358976
author Stevo Stevic
Mohammed Alghamdi
Abdullah Alotaibi
N. Shahzad
author_facet Stevo Stevic
Mohammed Alghamdi
Abdullah Alotaibi
N. Shahzad
author_sort Stevo Stevic
collection DOAJ
description The boundedness character of positive solutions of the next max-type system of difference equations $$x_{n+1}=\max\left\{A,\frac{y_n^p}{x_{n-1}^q}\right\},\quad y_{n+1}=\max\left\{A,\frac{x_n^p}{y_{n-1}^q}\right\},\quad n\in\mathbb{N}_0,$$ with $\min\{A, p, q\}>0$, is characterized.
first_indexed 2024-04-09T13:39:58Z
format Article
id doaj.art-e928118fd05f483aabf93346a41984ce
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:39:58Z
publishDate 2014-09-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-e928118fd05f483aabf93346a41984ce2023-05-09T07:53:04ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752014-09-0120144511210.14232/ejqtde.2014.1.453150Boundedness character of a max-type system of difference equations of second orderStevo Stevic0Mohammed Alghamdi1Abdullah Alotaibi2N. Shahzad3Mathematical Institute of the Serbian Academy of Sciences, Beograd, SerbiaKing Abdulaziz University, Jeddah, Saudi ArabiaKing Abdulaziz University, Jeddah, Saudi ArabiaKing Abdulaziz University, Jeddah, Saudi ArabiaThe boundedness character of positive solutions of the next max-type system of difference equations $$x_{n+1}=\max\left\{A,\frac{y_n^p}{x_{n-1}^q}\right\},\quad y_{n+1}=\max\left\{A,\frac{x_n^p}{y_{n-1}^q}\right\},\quad n\in\mathbb{N}_0,$$ with $\min\{A, p, q\}>0$, is characterized.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3150max-type system of difference equationspositive solutionsbounded solutionsunbounded solutions
spellingShingle Stevo Stevic
Mohammed Alghamdi
Abdullah Alotaibi
N. Shahzad
Boundedness character of a max-type system of difference equations of second order
Electronic Journal of Qualitative Theory of Differential Equations
max-type system of difference equations
positive solutions
bounded solutions
unbounded solutions
title Boundedness character of a max-type system of difference equations of second order
title_full Boundedness character of a max-type system of difference equations of second order
title_fullStr Boundedness character of a max-type system of difference equations of second order
title_full_unstemmed Boundedness character of a max-type system of difference equations of second order
title_short Boundedness character of a max-type system of difference equations of second order
title_sort boundedness character of a max type system of difference equations of second order
topic max-type system of difference equations
positive solutions
bounded solutions
unbounded solutions
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3150
work_keys_str_mv AT stevostevic boundednesscharacterofamaxtypesystemofdifferenceequationsofsecondorder
AT mohammedalghamdi boundednesscharacterofamaxtypesystemofdifferenceequationsofsecondorder
AT abdullahalotaibi boundednesscharacterofamaxtypesystemofdifferenceequationsofsecondorder
AT nshahzad boundednesscharacterofamaxtypesystemofdifferenceequationsofsecondorder