Tuning phonon transport spectrum for better thermoelectric materials
The figure of merit of thermoelectric materials can be increased by suppressing the lattice thermal conductivity without degrading electrical properties. Phonons are the carriers for lattice thermal conduction, and their transport can be impeded by nanostructuring, owing to the recent progress in na...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2019-12-01
|
Series: | Science and Technology of Advanced Materials |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/14686996.2018.1548884 |
_version_ | 1818135583978946560 |
---|---|
author | Takuma Hori Junichiro Shiomi |
author_facet | Takuma Hori Junichiro Shiomi |
author_sort | Takuma Hori |
collection | DOAJ |
description | The figure of merit of thermoelectric materials can be increased by suppressing the lattice thermal conductivity without degrading electrical properties. Phonons are the carriers for lattice thermal conduction, and their transport can be impeded by nanostructuring, owing to the recent progress in nanotechnology. The key question for further improvement of thermoelectric materials is how to realize ultimate structure with minimum lattice thermal conductivity. From spectral viewpoint, this means to impede transport of phonons in the entire spectral domain with noticeable contribution to lattice thermal conductivity that ranges in general from subterahertz to tens of terahertz in frequency. To this end, it is essential to know how the phonon transport varies with the length scale, morphology, and composition of nanostructures, and how effects of different nanostructures can be mutually adopted in view of the spectral domain. Here we review recent advances in analyzing such spectral impedance of phonon transport on the basis of various effects including alloy scattering, boundary scattering, and particle resonance. |
first_indexed | 2024-12-11T09:26:50Z |
format | Article |
id | doaj.art-e9547ca774ca4fd48078831bed0f45d1 |
institution | Directory Open Access Journal |
issn | 1468-6996 1878-5514 |
language | English |
last_indexed | 2024-12-11T09:26:50Z |
publishDate | 2019-12-01 |
publisher | Taylor & Francis Group |
record_format | Article |
series | Science and Technology of Advanced Materials |
spelling | doaj.art-e9547ca774ca4fd48078831bed0f45d12022-12-22T01:13:07ZengTaylor & Francis GroupScience and Technology of Advanced Materials1468-69961878-55142019-12-01201102510.1080/14686996.2018.15488841548884Tuning phonon transport spectrum for better thermoelectric materialsTakuma Hori0Junichiro Shiomi1Tokyo University of ScienceThe University of TokyoThe figure of merit of thermoelectric materials can be increased by suppressing the lattice thermal conductivity without degrading electrical properties. Phonons are the carriers for lattice thermal conduction, and their transport can be impeded by nanostructuring, owing to the recent progress in nanotechnology. The key question for further improvement of thermoelectric materials is how to realize ultimate structure with minimum lattice thermal conductivity. From spectral viewpoint, this means to impede transport of phonons in the entire spectral domain with noticeable contribution to lattice thermal conductivity that ranges in general from subterahertz to tens of terahertz in frequency. To this end, it is essential to know how the phonon transport varies with the length scale, morphology, and composition of nanostructures, and how effects of different nanostructures can be mutually adopted in view of the spectral domain. Here we review recent advances in analyzing such spectral impedance of phonon transport on the basis of various effects including alloy scattering, boundary scattering, and particle resonance.http://dx.doi.org/10.1080/14686996.2018.1548884thermoelectric materialphonon transportlattice thermal conductivityalloy scatteringsintered nanostructureparticle resonance |
spellingShingle | Takuma Hori Junichiro Shiomi Tuning phonon transport spectrum for better thermoelectric materials Science and Technology of Advanced Materials thermoelectric material phonon transport lattice thermal conductivity alloy scattering sintered nanostructure particle resonance |
title | Tuning phonon transport spectrum for better thermoelectric materials |
title_full | Tuning phonon transport spectrum for better thermoelectric materials |
title_fullStr | Tuning phonon transport spectrum for better thermoelectric materials |
title_full_unstemmed | Tuning phonon transport spectrum for better thermoelectric materials |
title_short | Tuning phonon transport spectrum for better thermoelectric materials |
title_sort | tuning phonon transport spectrum for better thermoelectric materials |
topic | thermoelectric material phonon transport lattice thermal conductivity alloy scattering sintered nanostructure particle resonance |
url | http://dx.doi.org/10.1080/14686996.2018.1548884 |
work_keys_str_mv | AT takumahori tuningphonontransportspectrumforbetterthermoelectricmaterials AT junichiroshiomi tuningphonontransportspectrumforbetterthermoelectricmaterials |