Phase Development in the Sintering of a Hematite–Ilmenite Ore Blend

The use of low-grade iron ores has attracted a lot of interest where fines from these ores are sintered to improve their strength. Ti-containing ores are one of the abundantly available iron ores of low-grade. The sintering of the hematite–ilmenite ore blends has several challenges, which include th...

Full description

Bibliographic Details
Main Authors: Edson K. Chiwandika, Seong-Kyu Cho, Sung-Mo Jung
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/10/9/800
Description
Summary:The use of low-grade iron ores has attracted a lot of interest where fines from these ores are sintered to improve their strength. Ti-containing ores are one of the abundantly available iron ores of low-grade. The sintering of the hematite–ilmenite ore blends has several challenges, which include the formation of perovskite. The sintering behavior of a hematite–ilmenite ore sinter blend was investigated in 75 vol% N<sub>2</sub>, 24 vol% CO<sub>2</sub>, and 1 vol% CO in the temperature range of 1373 to 1523 K. Phase development and distribution of metallic elements were investigated by x-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and electron probe microanalysis (EPMA). The addition of ilmenite ore to hematite ore increased the temperature of melt formation. More titanium (Ti) was distributed in the glass phase with increasing temperature. Morphological change showed that the amount of sinter-bonding phase generated was low, below 1473 K. Weak sinter bonding strength might be caused by the presence of Ti in the glass phase at high temperature. This might affect the fracture toughness of the glass phase.
ISSN:2075-163X