Enhanced electrochemical performances of LiNi0.5Mn1.5O4 by surface modification with Cu nanoparticles

5V spinel LiNi0.5Mn1.5O4 cathode is prepared by traditional solid-state method and nano-Cu particles were derived from a chemical reduction process. The effect of Cu-coating on the electrochemical performances of LiNi0.5Mn1.5O4 cells, in a wide operation temperature range (-10°C, 25°C, 60°C...

Full description

Bibliographic Details
Main Authors: Zhao G., Lin Y., Zhu W., Yang W., Huang Z.
Format: Article
Language:English
Published: Technical Faculty, Bor 2017-01-01
Series:Journal of Mining and Metallurgy. Section B: Metallurgy
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/1450-5339/2017/1450-53391600021Z.pdf
Description
Summary:5V spinel LiNi0.5Mn1.5O4 cathode is prepared by traditional solid-state method and nano-Cu particles were derived from a chemical reduction process. The effect of Cu-coating on the electrochemical performances of LiNi0.5Mn1.5O4 cells, in a wide operation temperature range (-10°C, 25°C, 60°C), is investigated systematically by the charge/discharge testing, cyclic voltammograms and impedance spectroscopy, respectively. The results demonstrate that the modified material exhibits remarkably enhanced electrochemical reversibility and stability. Cu-coated material has much lower surface and charge transfer resistances and shows a higher lithium diffusion rate. The Cu coating layer as a highly efficient lithium ion conductor, acted as a highly efficient protector to restrain the contact loss.
ISSN:1450-5339
2217-7175