Toward discovering new anti-cancer agents targeting topoisomerase IIα: a facile screening strategy adaptable to high throughput platform.

Topoisomerases are a family of vital enzymes capable of resolving topological problems in DNA during various genetic processes. Topoisomerase poisons, blocking reunion of cleaved DNA strands and stabilizing enzyme-mediated DNA cleavage complex, are clinically important antineoplastic and anti-microb...

Full description

Bibliographic Details
Main Authors: Yu-Shih Lin, Wan-Chen Huang, Mei-Shya Chen, Tao-Shih Hsieh
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4014593?pdf=render
Description
Summary:Topoisomerases are a family of vital enzymes capable of resolving topological problems in DNA during various genetic processes. Topoisomerase poisons, blocking reunion of cleaved DNA strands and stabilizing enzyme-mediated DNA cleavage complex, are clinically important antineoplastic and anti-microbial agents. However, the rapid rise of drug resistance that impedes the therapeutic efficacy of these life-saving drugs makes the discovering of new lead compounds ever more urgent. We report here a facile high throughput screening system for agents targeting human topoisomerase IIα (Top2α). The assay is based on the measurement of fluorescence anisotropy of a 29 bp fluorophore-labeled oligonucleotide duplex. Since drug-stabilized Top2α-bound DNA has a higher anisotropy compared with free DNA, this assay can work if one can use a dissociating agent to specifically disrupt the enzyme/DNA binary complexes but not the drug-stabilized ternary complexes. Here we demonstrate that NaClO4, a chaotropic agent, serves a critical role in our screening method to differentiate the drug-stabilized enzyme/DNA complexes from those that are not. With this strategy we screened a chemical library of 100,000 compounds and obtained 54 positive hits. We characterized three of them on this list and demonstrated their effects on the Top2α-mediated reactions. Our results suggest that this new screening strategy can be useful in discovering additional candidates of anti-cancer agents.
ISSN:1932-6203