A Laser-Induced Breakdown Spectroscopy Experiment Platform for High-Degree Simulation of MarSCoDe In Situ Detection on Mars

The Zhurong rover of China’s Tianwen-1 mission started its inspection tour on Mars in May 2021. As a major scientific payload onboard the Zhurong rover, the Mars Surface Composition Detector (MarSCoDe) instrument adopts laser-induced breakdown spectroscopy (LIBS) to detect and analyze the chemical c...

Full description

Bibliographic Details
Main Authors: Zhicheng Cui, Liangchen Jia, Luning Li, Xiangfeng Liu, Weiming Xu, Rong Shu, Xuesen Xu
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/9/1954
Description
Summary:The Zhurong rover of China’s Tianwen-1 mission started its inspection tour on Mars in May 2021. As a major scientific payload onboard the Zhurong rover, the Mars Surface Composition Detector (MarSCoDe) instrument adopts laser-induced breakdown spectroscopy (LIBS) to detect and analyze the chemical composition of Martian materials. This paper introduces an experimental platform capable of establishing a simulated Martian atmospheric environment, in which a duplicate model of the MarSCoDe flight model is placed. In the simulated environment, the limit vacuum degree can reach 10<sup>−5</sup> Pa level, the temperature can change from −190 °C to +180 °C, and different gases can be filled and mixed according to desired proportion. Moreover, the sample stage can move along a track inside the vacuum chamber, enabling the detection distance to vary from 1.5 m to 7 m. Preliminary experimental results indicate that this platform is able to simulate the scenario of MarSCoDe in situ LIBS detection on Mars well.
ISSN:2072-4292