Conversion of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol to 3alpha, 7alpha-dihydroxy- and 3alpha, 7alpha, 12alpha-trihydroxy-5beta-steroids in vitro.

The metabolism of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol (24alpha-ethyl-5-cholestene-3beta,7alpha-diol) has been compared in rat liver subcellular fractions. 7alpha-Hydroxy-beta-sitosterol was shown to be metabolized in the same manner as 7alpha-hydroxycholesterol. Thus, the fo...

Full description

Bibliographic Details
Main Author: L Aringer
Format: Article
Language:English
Published: Elsevier 1975-11-01
Series:Journal of Lipid Research
Online Access:http://www.sciencedirect.com/science/article/pii/S0022227520344928
_version_ 1818590563541188608
author L Aringer
author_facet L Aringer
author_sort L Aringer
collection DOAJ
description The metabolism of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol (24alpha-ethyl-5-cholestene-3beta,7alpha-diol) has been compared in rat liver subcellular fractions. 7alpha-Hydroxy-beta-sitosterol was shown to be metabolized in the same manner as 7alpha-hydroxycholesterol. Thus, the following C29 metabolites have been identified: 24alpha-ethyl-7alpha-hydroxy-4-cholesten-3-one, 24alpha-ethyl-7alpha,12alpha-dihydroxy-4-cholesten-3-one, 24alpha-ethyl-7alpha-hydroxy-5beta-cholestan-3-one, 24alpha-ethyl-5beta-cholestane-3alpha,7alpha-diol, 24alpha-ethyl-7alpha,12alpha-dihydrozy-5beta-cholestan-3-one, and 24alpha-ethyl-5beta-cholestane-3alha,7alpha,12alpha-triol. The C29 compounds were generally less efficient substrates. The most pronounced difference was noted for the delta4-3-oxosteroid 5beta-reductase. Thus, 7alpha-hydroxy-4-cholesten-3-one was three to four times as efficiently reduced as the C29 analog. The oxidation of the 3beta,7alpha-dihydroxy-delta5-steroid to the 7alpha-hydroxy-delta4-3-oxosteroid, the 12alpha-hydroxylation of the 7alpha-hydroxy-delta4-3-oxosteroid, and the reduction of the 7alpha-hydroxy-5beta-3-oxosteroid to the 3alpha,7alpha-dihydroxy-5beta-steroid occurred in up to two times better yields for the C27 steroids.
first_indexed 2024-12-16T09:58:32Z
format Article
id doaj.art-e975a062cd1d4cc2870e83761a307c57
institution Directory Open Access Journal
issn 0022-2275
language English
last_indexed 2024-12-16T09:58:32Z
publishDate 1975-11-01
publisher Elsevier
record_format Article
series Journal of Lipid Research
spelling doaj.art-e975a062cd1d4cc2870e83761a307c572022-12-21T22:35:52ZengElsevierJournal of Lipid Research0022-22751975-11-01166426433Conversion of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol to 3alpha, 7alpha-dihydroxy- and 3alpha, 7alpha, 12alpha-trihydroxy-5beta-steroids in vitro.L AringerThe metabolism of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol (24alpha-ethyl-5-cholestene-3beta,7alpha-diol) has been compared in rat liver subcellular fractions. 7alpha-Hydroxy-beta-sitosterol was shown to be metabolized in the same manner as 7alpha-hydroxycholesterol. Thus, the following C29 metabolites have been identified: 24alpha-ethyl-7alpha-hydroxy-4-cholesten-3-one, 24alpha-ethyl-7alpha,12alpha-dihydroxy-4-cholesten-3-one, 24alpha-ethyl-7alpha-hydroxy-5beta-cholestan-3-one, 24alpha-ethyl-5beta-cholestane-3alpha,7alpha-diol, 24alpha-ethyl-7alpha,12alpha-dihydrozy-5beta-cholestan-3-one, and 24alpha-ethyl-5beta-cholestane-3alha,7alpha,12alpha-triol. The C29 compounds were generally less efficient substrates. The most pronounced difference was noted for the delta4-3-oxosteroid 5beta-reductase. Thus, 7alpha-hydroxy-4-cholesten-3-one was three to four times as efficiently reduced as the C29 analog. The oxidation of the 3beta,7alpha-dihydroxy-delta5-steroid to the 7alpha-hydroxy-delta4-3-oxosteroid, the 12alpha-hydroxylation of the 7alpha-hydroxy-delta4-3-oxosteroid, and the reduction of the 7alpha-hydroxy-5beta-3-oxosteroid to the 3alpha,7alpha-dihydroxy-5beta-steroid occurred in up to two times better yields for the C27 steroids.http://www.sciencedirect.com/science/article/pii/S0022227520344928
spellingShingle L Aringer
Conversion of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol to 3alpha, 7alpha-dihydroxy- and 3alpha, 7alpha, 12alpha-trihydroxy-5beta-steroids in vitro.
Journal of Lipid Research
title Conversion of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol to 3alpha, 7alpha-dihydroxy- and 3alpha, 7alpha, 12alpha-trihydroxy-5beta-steroids in vitro.
title_full Conversion of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol to 3alpha, 7alpha-dihydroxy- and 3alpha, 7alpha, 12alpha-trihydroxy-5beta-steroids in vitro.
title_fullStr Conversion of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol to 3alpha, 7alpha-dihydroxy- and 3alpha, 7alpha, 12alpha-trihydroxy-5beta-steroids in vitro.
title_full_unstemmed Conversion of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol to 3alpha, 7alpha-dihydroxy- and 3alpha, 7alpha, 12alpha-trihydroxy-5beta-steroids in vitro.
title_short Conversion of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol to 3alpha, 7alpha-dihydroxy- and 3alpha, 7alpha, 12alpha-trihydroxy-5beta-steroids in vitro.
title_sort conversion of 7alpha hydroxycholesterol and 7alpha hydroxy beta sitosterol to 3alpha 7alpha dihydroxy and 3alpha 7alpha 12alpha trihydroxy 5beta steroids in vitro
url http://www.sciencedirect.com/science/article/pii/S0022227520344928
work_keys_str_mv AT laringer conversionof7alphahydroxycholesteroland7alphahydroxybetasitosterolto3alpha7alphadihydroxyand3alpha7alpha12alphatrihydroxy5betasteroidsinvitro