Mineralogical Controls on the Ti Isotope Composition of Subduction Zone Magmas

Abstract The positive Ti isotope versus SiO2‐content correlation in igneous rocks reflects the fractional crystallization of Ti‐bearing oxide minerals. However, Ti isotope variations of subduction‐related igneous rocks indicate that the Ti isotope compositions of their mantle sources are heterogeneo...

Full description

Bibliographic Details
Main Authors: S. Kommescher, F. Kurzweil, R. O. C. Fonseca, L. J. A. Rzehak, S. V. Hohl, M. Kirchenbaur, S. Schuth, P. Sprung, C. Münker
Format: Article
Language:English
Published: Wiley 2023-08-01
Series:Geochemistry, Geophysics, Geosystems
Subjects:
Online Access:https://doi.org/10.1029/2022GC010840
_version_ 1827771704650235904
author S. Kommescher
F. Kurzweil
R. O. C. Fonseca
L. J. A. Rzehak
S. V. Hohl
M. Kirchenbaur
S. Schuth
P. Sprung
C. Münker
author_facet S. Kommescher
F. Kurzweil
R. O. C. Fonseca
L. J. A. Rzehak
S. V. Hohl
M. Kirchenbaur
S. Schuth
P. Sprung
C. Münker
author_sort S. Kommescher
collection DOAJ
description Abstract The positive Ti isotope versus SiO2‐content correlation in igneous rocks reflects the fractional crystallization of Ti‐bearing oxide minerals. However, Ti isotope variations of subduction‐related igneous rocks indicate that the Ti isotope compositions of their mantle sources are heterogeneous and additional mineral phases may promote Ti isotope fractionation. We have determined the Ti isotope composition of well‐characterized subduction‐related basalts, andesites and boninites. Samples from the Solomon Islands, the Troodos ophiolite in Cyprus, and Cape Vogel in Papua New Guinea show small but resolvable variations that may be related to differences in their mantle sources. Specifically, the δ49Ti of boninites (+0.109‰ to +0.168‰) is slightly higher than that of tholeiites (−0.027‰ to +0.111‰) from the same localities (Troodos in Cyprus and Cape Vogel in Papua New Guinea). Modeling suggests the partial melting of progressively depleted mantle sources where residual Cr‐spinel plays a greater role in controlling the Ti budget during partial melting. More pronounced variations in δ49Ti are clearly linked to the fractional crystallization of Ti‐oxides: Samples from Rabaul Volcanic Complex (New Britain, Papua New Guinea) show increasing δ49Ti (up to +0.373‰) with increasing Ti/V and decreasing Dy/Yb. Fractional crystallization models suggest that oxide minerals and amphibole are needed to sufficiently increase the δ49Ti of these magmas. Our study highlights that the combination of diagnostic trace element patterns and Ti isotope compositions in subduction‐related igneous rocks can be a powerful tool to constrain petrogenetic processes and to discriminate between different crystallizing mineral phases.
first_indexed 2024-03-11T12:58:01Z
format Article
id doaj.art-e97ade50649e4e9084100644e187b5ef
institution Directory Open Access Journal
issn 1525-2027
language English
last_indexed 2024-03-11T12:58:01Z
publishDate 2023-08-01
publisher Wiley
record_format Article
series Geochemistry, Geophysics, Geosystems
spelling doaj.art-e97ade50649e4e9084100644e187b5ef2023-11-03T16:56:02ZengWileyGeochemistry, Geophysics, Geosystems1525-20272023-08-01248n/an/a10.1029/2022GC010840Mineralogical Controls on the Ti Isotope Composition of Subduction Zone MagmasS. Kommescher0F. Kurzweil1R. O. C. Fonseca2L. J. A. Rzehak3S. V. Hohl4M. Kirchenbaur5S. Schuth6P. Sprung7C. Münker8Institut für Geologie und Mineralogie Universität zu Köln Köln GermanyInstitut für Mineralogie Leibniz Universität Hannover Hannover GermanyInstitut für Geologie, Mineralogie und Geophysik Ruhr‐Universität Bochum Bochum GermanyInstitut für Geologie, Mineralogie und Geophysik Ruhr‐Universität Bochum Bochum GermanyState Key Laboratory of Marine Geology School of Ocean and Earth Science Tongji University Shanghai ChinaInstitut für Geologie, Mineralogie und Geophysik Ruhr‐Universität Bochum Bochum GermanyInstitut für Geologie, Mineralogie und Geophysik Ruhr‐Universität Bochum Bochum GermanyHot Laboratory Division (AHL) Paul Scherer Institut Villigen SwitzerlandInstitut für Geologie und Mineralogie Universität zu Köln Köln GermanyAbstract The positive Ti isotope versus SiO2‐content correlation in igneous rocks reflects the fractional crystallization of Ti‐bearing oxide minerals. However, Ti isotope variations of subduction‐related igneous rocks indicate that the Ti isotope compositions of their mantle sources are heterogeneous and additional mineral phases may promote Ti isotope fractionation. We have determined the Ti isotope composition of well‐characterized subduction‐related basalts, andesites and boninites. Samples from the Solomon Islands, the Troodos ophiolite in Cyprus, and Cape Vogel in Papua New Guinea show small but resolvable variations that may be related to differences in their mantle sources. Specifically, the δ49Ti of boninites (+0.109‰ to +0.168‰) is slightly higher than that of tholeiites (−0.027‰ to +0.111‰) from the same localities (Troodos in Cyprus and Cape Vogel in Papua New Guinea). Modeling suggests the partial melting of progressively depleted mantle sources where residual Cr‐spinel plays a greater role in controlling the Ti budget during partial melting. More pronounced variations in δ49Ti are clearly linked to the fractional crystallization of Ti‐oxides: Samples from Rabaul Volcanic Complex (New Britain, Papua New Guinea) show increasing δ49Ti (up to +0.373‰) with increasing Ti/V and decreasing Dy/Yb. Fractional crystallization models suggest that oxide minerals and amphibole are needed to sufficiently increase the δ49Ti of these magmas. Our study highlights that the combination of diagnostic trace element patterns and Ti isotope compositions in subduction‐related igneous rocks can be a powerful tool to constrain petrogenetic processes and to discriminate between different crystallizing mineral phases.https://doi.org/10.1029/2022GC010840stable isotopesTitaniumsubduction zones
spellingShingle S. Kommescher
F. Kurzweil
R. O. C. Fonseca
L. J. A. Rzehak
S. V. Hohl
M. Kirchenbaur
S. Schuth
P. Sprung
C. Münker
Mineralogical Controls on the Ti Isotope Composition of Subduction Zone Magmas
Geochemistry, Geophysics, Geosystems
stable isotopes
Titanium
subduction zones
title Mineralogical Controls on the Ti Isotope Composition of Subduction Zone Magmas
title_full Mineralogical Controls on the Ti Isotope Composition of Subduction Zone Magmas
title_fullStr Mineralogical Controls on the Ti Isotope Composition of Subduction Zone Magmas
title_full_unstemmed Mineralogical Controls on the Ti Isotope Composition of Subduction Zone Magmas
title_short Mineralogical Controls on the Ti Isotope Composition of Subduction Zone Magmas
title_sort mineralogical controls on the ti isotope composition of subduction zone magmas
topic stable isotopes
Titanium
subduction zones
url https://doi.org/10.1029/2022GC010840
work_keys_str_mv AT skommescher mineralogicalcontrolsonthetiisotopecompositionofsubductionzonemagmas
AT fkurzweil mineralogicalcontrolsonthetiisotopecompositionofsubductionzonemagmas
AT rocfonseca mineralogicalcontrolsonthetiisotopecompositionofsubductionzonemagmas
AT ljarzehak mineralogicalcontrolsonthetiisotopecompositionofsubductionzonemagmas
AT svhohl mineralogicalcontrolsonthetiisotopecompositionofsubductionzonemagmas
AT mkirchenbaur mineralogicalcontrolsonthetiisotopecompositionofsubductionzonemagmas
AT sschuth mineralogicalcontrolsonthetiisotopecompositionofsubductionzonemagmas
AT psprung mineralogicalcontrolsonthetiisotopecompositionofsubductionzonemagmas
AT cmunker mineralogicalcontrolsonthetiisotopecompositionofsubductionzonemagmas