Impact of cooling rate on mechanical properties and failure mechanism of sandstone under thermal–mechanical coupling effect

Abstract High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction, space development, and energy utilization. One of the key issues is to understand the mechanical properties and failure mechanism of high-temperature rock disturbed by low-tem...

Full description

Bibliographic Details
Main Authors: Pingye Guo, Peng Zhang, Mohua Bu, Hang Xing, Manchao He
Format: Article
Language:English
Published: SpringerOpen 2023-04-01
Series:International Journal of Coal Science & Technology
Subjects:
Online Access:https://doi.org/10.1007/s40789-023-00584-7
Description
Summary:Abstract High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction, space development, and energy utilization. One of the key issues is to understand the mechanical properties and failure mechanism of high-temperature rock disturbed by low-temperature airflow after excavation. Therefore, the experimental and numerical investigation were carried out to study the impact of cooling rate on mechanical properties and failure mechanism of high temperature sandstone. First, uniaxial compression experiments of high temperature sandstone at different real-time cooling rates were carried out to study the mechanical properties and failure modes. The experimental results indicate that the cooling rate has a significant effect on the mechanical properties and failure modes of sandstone. The peak strain, peak stress, and elastic modulus decrease with an increase in cooling rate, and the fragmentation degree after failure increases gradually. Moreover, the equivalent numerical model of heterogeneous sandstone was established using particle flow code (PFC) to reveal the failure mechanism. The results indicate that the sandstone is dominated by intragrain failure in the cooling stage, the number of microcracks is exponentially related to the cooling rate, and the higher the cooling rate, the more cracks are concentrated in the exterior region. Under axial loading, the tensile stress is mostly distributed along the radial direction, and the damage in the cooling stage is mostly due to the fracture of the radial bond. In addition, axial loading, temperature gradient and thermal stress mismatch between adjacent minerals are the main reasons for the damage of sandstone in the cooling stage. Moreover, the excessive temperature gradient in the exterior region of the sandstone is the main reason for the damage concentration in this region.
ISSN:2095-8293
2198-7823