High-Harmonic Generation Using a Single Dielectric Nanostructure

High-harmonic generation (HHG) from solids is a novel method used to emanate coherent extreme-ultraviolet (EUV) pulses. The efficiency of plasmonic HHG can be improved by enhancing the field of nanostructures. However, the nanostructures used for plasmonic HHG have a limitation owing to the damage c...

Full description

Bibliographic Details
Main Author: Seunghwoi Han
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/9/6/427
Description
Summary:High-harmonic generation (HHG) from solids is a novel method used to emanate coherent extreme-ultraviolet (EUV) pulses. The efficiency of plasmonic HHG can be improved by enhancing the field of nanostructures. However, the nanostructures used for plasmonic HHG have a limitation owing to the damage caused by the amplified field. This study presents a single conical sapphire nanostructure used as a compact HHG emitter that generates high-order harmonics with wavelengths up to approximately 60 nm without causing severe damage. We compare the structure with a gold-layered conical sapphire structure and a bulk sapphire. The conical sapphire structure has a higher damage threshold and reusability for EUV generation even though it has a lower HHG intensity than that of the gold-layered conical sapphire structure because of the lower intensity enhancement. The measured signal intensity of the high-order harmonics in the EUV band from the conical sapphire structure is ten times higher than that of the bulk sapphire. The results confirm the possibility of creating a compact EUV light source for nanoscale applications.
ISSN:2304-6732