Fluoroless intravascular ultrasound image-guided liver navigation in porcine models
Abstract Background An intravascular ultrasound catheter (IVUSc) was developed for intracardiac ultrasound to assess interventions with compelling results. However, intrahepatic vascular exploration was rarely tested and was always associated with X-ray techniques. The aim of this study was to demon...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2021-01-01
|
Series: | BMC Gastroenterology |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12876-021-01600-3 |
_version_ | 1818728439994122240 |
---|---|
author | Takeshi Urade Juan Manuel Verde Alain García Vázquez Konstanze Gunzert Patrick Pessaux Jacques Marescaux Mariano Eduardo Giménez |
author_facet | Takeshi Urade Juan Manuel Verde Alain García Vázquez Konstanze Gunzert Patrick Pessaux Jacques Marescaux Mariano Eduardo Giménez |
author_sort | Takeshi Urade |
collection | DOAJ |
description | Abstract Background An intravascular ultrasound catheter (IVUSc) was developed for intracardiac ultrasound to assess interventions with compelling results. However, intrahepatic vascular exploration was rarely tested and was always associated with X-ray techniques. The aim of this study was to demonstrate the feasibility to navigate through the whole liver using an IVUSc, providing high-quality images and making it unnecessary to use ionizing radiation. Methods An ex vivo pig visceral block and an in vivo pig model were used in this study. The IVUS equipment was composed of an US system, and of an 8 French lateral firing IVUSc capable of producing 90-degree sector images in the longitudinal plane. After accessing the intravascular space with the IVUSc into the models, predetermined anatomical landmarks were visualized from the inferior vena cava and hepatic veins and corroborated. Results IVUS navigation was achieved in both models successfully. The entire navigation protocol took 87 and 48 min respectively, and 100% (21/21) and 96.15% (25/26) of the landmarks were correctly identified with the IVUSc alone in the ex vivo and in vivo models respectively. IVUS allowed to clearly visualize the vasculature beyond third-order branches of the hepatic and portal veins. Conclusions A complete IVUS liver navigation is feasible using the IVUSc alone, making it unnecessary to use ionizing radiation. This approach provides high-definition and real-time images of the complex liver structure and offers a great potential for future clinical applications during diagnostic and therapeutic interventions. |
first_indexed | 2024-12-17T22:30:01Z |
format | Article |
id | doaj.art-e99921f0027c49888a974a4c8ffbe495 |
institution | Directory Open Access Journal |
issn | 1471-230X |
language | English |
last_indexed | 2024-12-17T22:30:01Z |
publishDate | 2021-01-01 |
publisher | BMC |
record_format | Article |
series | BMC Gastroenterology |
spelling | doaj.art-e99921f0027c49888a974a4c8ffbe4952022-12-21T21:30:13ZengBMCBMC Gastroenterology1471-230X2021-01-012111710.1186/s12876-021-01600-3Fluoroless intravascular ultrasound image-guided liver navigation in porcine modelsTakeshi Urade0Juan Manuel Verde1Alain García Vázquez2Konstanze Gunzert3Patrick Pessaux4Jacques Marescaux5Mariano Eduardo Giménez6Institute of Image-Guided Surgery, IHU StrasbourgInstitute of Image-Guided Surgery, IHU StrasbourgInstitute of Image-Guided Surgery, IHU StrasbourgSiemens Healthcare SASInstitute of Image-Guided Surgery, IHU StrasbourgInstitute of Image-Guided Surgery, IHU StrasbourgInstitute of Image-Guided Surgery, IHU StrasbourgAbstract Background An intravascular ultrasound catheter (IVUSc) was developed for intracardiac ultrasound to assess interventions with compelling results. However, intrahepatic vascular exploration was rarely tested and was always associated with X-ray techniques. The aim of this study was to demonstrate the feasibility to navigate through the whole liver using an IVUSc, providing high-quality images and making it unnecessary to use ionizing radiation. Methods An ex vivo pig visceral block and an in vivo pig model were used in this study. The IVUS equipment was composed of an US system, and of an 8 French lateral firing IVUSc capable of producing 90-degree sector images in the longitudinal plane. After accessing the intravascular space with the IVUSc into the models, predetermined anatomical landmarks were visualized from the inferior vena cava and hepatic veins and corroborated. Results IVUS navigation was achieved in both models successfully. The entire navigation protocol took 87 and 48 min respectively, and 100% (21/21) and 96.15% (25/26) of the landmarks were correctly identified with the IVUSc alone in the ex vivo and in vivo models respectively. IVUS allowed to clearly visualize the vasculature beyond third-order branches of the hepatic and portal veins. Conclusions A complete IVUS liver navigation is feasible using the IVUSc alone, making it unnecessary to use ionizing radiation. This approach provides high-definition and real-time images of the complex liver structure and offers a great potential for future clinical applications during diagnostic and therapeutic interventions.https://doi.org/10.1186/s12876-021-01600-3FluorolessImage guidanceIntravascularLiverNavigationUltrasound catheter |
spellingShingle | Takeshi Urade Juan Manuel Verde Alain García Vázquez Konstanze Gunzert Patrick Pessaux Jacques Marescaux Mariano Eduardo Giménez Fluoroless intravascular ultrasound image-guided liver navigation in porcine models BMC Gastroenterology Fluoroless Image guidance Intravascular Liver Navigation Ultrasound catheter |
title | Fluoroless intravascular ultrasound image-guided liver navigation in porcine models |
title_full | Fluoroless intravascular ultrasound image-guided liver navigation in porcine models |
title_fullStr | Fluoroless intravascular ultrasound image-guided liver navigation in porcine models |
title_full_unstemmed | Fluoroless intravascular ultrasound image-guided liver navigation in porcine models |
title_short | Fluoroless intravascular ultrasound image-guided liver navigation in porcine models |
title_sort | fluoroless intravascular ultrasound image guided liver navigation in porcine models |
topic | Fluoroless Image guidance Intravascular Liver Navigation Ultrasound catheter |
url | https://doi.org/10.1186/s12876-021-01600-3 |
work_keys_str_mv | AT takeshiurade fluorolessintravascularultrasoundimageguidedlivernavigationinporcinemodels AT juanmanuelverde fluorolessintravascularultrasoundimageguidedlivernavigationinporcinemodels AT alaingarciavazquez fluorolessintravascularultrasoundimageguidedlivernavigationinporcinemodels AT konstanzegunzert fluorolessintravascularultrasoundimageguidedlivernavigationinporcinemodels AT patrickpessaux fluorolessintravascularultrasoundimageguidedlivernavigationinporcinemodels AT jacquesmarescaux fluorolessintravascularultrasoundimageguidedlivernavigationinporcinemodels AT marianoeduardogimenez fluorolessintravascularultrasoundimageguidedlivernavigationinporcinemodels |