ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI

The diffusion equation or known as heat equation is a parabolic and linear type of partial differential equation. One of the numerical method to approximate the solution of diffusion equations is Finite Difference Method (FDM). In this study, the analysis of numerical convergence of FDM to the solut...

Full description

Bibliographic Details
Main Authors: F. MUHAMMAD ZAIN, M. GARDA KHADAFI, P. H. GUNAWAN
Format: Article
Language:English
Published: Universitas Udayana 2018-02-01
Series:E-Jurnal Matematika
Online Access:https://ojs.unud.ac.id/index.php/mtk/article/view/37596
_version_ 1819261876787216384
author F. MUHAMMAD ZAIN
M. GARDA KHADAFI
P. H. GUNAWAN
author_facet F. MUHAMMAD ZAIN
M. GARDA KHADAFI
P. H. GUNAWAN
author_sort F. MUHAMMAD ZAIN
collection DOAJ
description The diffusion equation or known as heat equation is a parabolic and linear type of partial differential equation. One of the numerical method to approximate the solution of diffusion equations is Finite Difference Method (FDM). In this study, the analysis of numerical convergence of FDM to the solution of diffusion equation is discussed. The analytical solution of diffusion equation is given by the separation of variables approach. Here, the result show the convergence of rate the numerical method is approximately approach 2. This result is in a good agreement with the spatial error from Taylor expansion of spatial second derivative.
first_indexed 2024-12-23T19:48:46Z
format Article
id doaj.art-e9cb2b4b94da4825816f0d548f0f59e8
institution Directory Open Access Journal
issn 2303-1751
language English
last_indexed 2024-12-23T19:48:46Z
publishDate 2018-02-01
publisher Universitas Udayana
record_format Article
series E-Jurnal Matematika
spelling doaj.art-e9cb2b4b94da4825816f0d548f0f59e82022-12-21T17:33:26ZengUniversitas UdayanaE-Jurnal Matematika2303-17512018-02-01711410.24843/MTK.2018.v07.i01.p17637596ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSIF. MUHAMMAD ZAIN0M. GARDA KHADAFI1P. H. GUNAWAN2Universitas TelkomUniversitas TelkomUniversitas TelkomThe diffusion equation or known as heat equation is a parabolic and linear type of partial differential equation. One of the numerical method to approximate the solution of diffusion equations is Finite Difference Method (FDM). In this study, the analysis of numerical convergence of FDM to the solution of diffusion equation is discussed. The analytical solution of diffusion equation is given by the separation of variables approach. Here, the result show the convergence of rate the numerical method is approximately approach 2. This result is in a good agreement with the spatial error from Taylor expansion of spatial second derivative.https://ojs.unud.ac.id/index.php/mtk/article/view/37596
spellingShingle F. MUHAMMAD ZAIN
M. GARDA KHADAFI
P. H. GUNAWAN
ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
E-Jurnal Matematika
title ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
title_full ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
title_fullStr ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
title_full_unstemmed ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
title_short ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
title_sort analisis konvergensi metode beda hingga dalam menghampiri persamaan difusi
url https://ojs.unud.ac.id/index.php/mtk/article/view/37596
work_keys_str_mv AT fmuhammadzain analisiskonvergensimetodebedahinggadalammenghampiripersamaandifusi
AT mgardakhadafi analisiskonvergensimetodebedahinggadalammenghampiripersamaandifusi
AT phgunawan analisiskonvergensimetodebedahinggadalammenghampiripersamaandifusi