The Application of Modified Normalized Difference Water Index (MNDWI) by Leaf Area Index in the Retrieval of Regional Drought Monitoring
The vegetation coverage is one of the important factors that restrict the accuracy of remote sensing retrieval of soil moisture. In order to effectively improve the accuracy of the remote sensing retrieval of soil moisture and to reduce the impact of vegetation coverage variation on the retrieval ac...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2015-04-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/141/2015/isprsarchives-XL-7-W3-141-2015.pdf |
_version_ | 1819071728267034624 |
---|---|
author | H.-w. Zhang H.-l. Chen |
author_facet | H.-w. Zhang H.-l. Chen |
author_sort | H.-w. Zhang |
collection | DOAJ |
description | The vegetation coverage is one of the important factors that restrict the accuracy of remote sensing retrieval of soil moisture. In order
to effectively improve the accuracy of the remote sensing retrieval of soil moisture and to reduce the impact of vegetation coverage
variation on the retrieval accuracy, the Leaf Area Index (LAI) is introduced to the Normalized Difference Water Index (NDWI) to
greatly improve the accuracy of the soil moisture retrieval. In its application on the regional drought monitoring, the paper uses the
relative LAI from two places which locate in the north and south of Henan Province respectively (Xin Xiang and Zhu Ma Dian) as
indicators. It uses the days after turned-green stage to conduct difference value correction on the Relative Leaf Area Index (RLAL)
of the entire province, so as to acquire the distribution of RLAI of the province’s wheat producing area. After this, the local remote
sensing NDWI will be Modified (MNDWI = NDWI ×RLAI ) to acquire the soil moisture distribution status of the entire
province’s wheat producing area. The result shows that, the Modified Normalized Difference Water Index of LAI which based on
the days after turned-green stage can improve the real time retrieval accuracy of soil moisture under different vegetation coverage. |
first_indexed | 2024-12-21T17:26:26Z |
format | Article |
id | doaj.art-e9f630ed475f46358bfa6962cf2ab264 |
institution | Directory Open Access Journal |
issn | 1682-1750 2194-9034 |
language | English |
last_indexed | 2024-12-21T17:26:26Z |
publishDate | 2015-04-01 |
publisher | Copernicus Publications |
record_format | Article |
series | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
spelling | doaj.art-e9f630ed475f46358bfa6962cf2ab2642022-12-21T18:56:02ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342015-04-01XL-7/W314114710.5194/isprsarchives-XL-7-W3-141-2015The Application of Modified Normalized Difference Water Index (MNDWI) by Leaf Area Index in the Retrieval of Regional Drought MonitoringH.-w. Zhang0H.-l. Chen1CMA, Henan Key Laboratory of Agro-meteorological Safeguard and Applied Technique, Zhengzhou 450003, ChinaCMA, Henan Key Laboratory of Agro-meteorological Safeguard and Applied Technique, Zhengzhou 450003, ChinaThe vegetation coverage is one of the important factors that restrict the accuracy of remote sensing retrieval of soil moisture. In order to effectively improve the accuracy of the remote sensing retrieval of soil moisture and to reduce the impact of vegetation coverage variation on the retrieval accuracy, the Leaf Area Index (LAI) is introduced to the Normalized Difference Water Index (NDWI) to greatly improve the accuracy of the soil moisture retrieval. In its application on the regional drought monitoring, the paper uses the relative LAI from two places which locate in the north and south of Henan Province respectively (Xin Xiang and Zhu Ma Dian) as indicators. It uses the days after turned-green stage to conduct difference value correction on the Relative Leaf Area Index (RLAL) of the entire province, so as to acquire the distribution of RLAI of the province’s wheat producing area. After this, the local remote sensing NDWI will be Modified (MNDWI = NDWI ×RLAI ) to acquire the soil moisture distribution status of the entire province’s wheat producing area. The result shows that, the Modified Normalized Difference Water Index of LAI which based on the days after turned-green stage can improve the real time retrieval accuracy of soil moisture under different vegetation coverage.http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/141/2015/isprsarchives-XL-7-W3-141-2015.pdf |
spellingShingle | H.-w. Zhang H.-l. Chen The Application of Modified Normalized Difference Water Index (MNDWI) by Leaf Area Index in the Retrieval of Regional Drought Monitoring The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
title | The Application of Modified Normalized Difference Water Index (MNDWI) by Leaf Area Index in the Retrieval of Regional Drought Monitoring |
title_full | The Application of Modified Normalized Difference Water Index (MNDWI) by Leaf Area Index in the Retrieval of Regional Drought Monitoring |
title_fullStr | The Application of Modified Normalized Difference Water Index (MNDWI) by Leaf Area Index in the Retrieval of Regional Drought Monitoring |
title_full_unstemmed | The Application of Modified Normalized Difference Water Index (MNDWI) by Leaf Area Index in the Retrieval of Regional Drought Monitoring |
title_short | The Application of Modified Normalized Difference Water Index (MNDWI) by Leaf Area Index in the Retrieval of Regional Drought Monitoring |
title_sort | application of modified normalized difference water index mndwi by leaf area index in the retrieval of regional drought monitoring |
url | http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/141/2015/isprsarchives-XL-7-W3-141-2015.pdf |
work_keys_str_mv | AT hwzhang theapplicationofmodifiednormalizeddifferencewaterindexmndwibyleafareaindexintheretrievalofregionaldroughtmonitoring AT hlchen theapplicationofmodifiednormalizeddifferencewaterindexmndwibyleafareaindexintheretrievalofregionaldroughtmonitoring AT hwzhang applicationofmodifiednormalizeddifferencewaterindexmndwibyleafareaindexintheretrievalofregionaldroughtmonitoring AT hlchen applicationofmodifiednormalizeddifferencewaterindexmndwibyleafareaindexintheretrievalofregionaldroughtmonitoring |