Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities

Abstract We investigated the cobalt polyoxometalate catalyst Ba8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] in oxygen evolution reaction for large‐scale water electrolysis. The catalyst was characterized, yielding BET surfaces (8.37 m2/g), crystal water content (8.38%, 44 H2O), elemental analyses and single cr...

Full description

Bibliographic Details
Main Authors: Kim‐Marie Vetter, Camila Aring da Silva Ramos Mauro, David Reinisch, Thomas Reichbauer, Nemanja Martić, Christian Jandl, Olaf Hinrichsen, Günter Schmid
Format: Article
Language:English
Published: Wiley-VCH 2022-06-01
Series:Electrochemical Science Advances
Subjects:
Online Access:https://doi.org/10.1002/elsa.202100073
_version_ 1818238884355506176
author Kim‐Marie Vetter
Camila Aring da Silva Ramos Mauro
David Reinisch
Thomas Reichbauer
Nemanja Martić
Christian Jandl
Olaf Hinrichsen
Günter Schmid
author_facet Kim‐Marie Vetter
Camila Aring da Silva Ramos Mauro
David Reinisch
Thomas Reichbauer
Nemanja Martić
Christian Jandl
Olaf Hinrichsen
Günter Schmid
author_sort Kim‐Marie Vetter
collection DOAJ
description Abstract We investigated the cobalt polyoxometalate catalyst Ba8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] in oxygen evolution reaction for large‐scale water electrolysis. The catalyst was characterized, yielding BET surfaces (8.37 m2/g), crystal water content (8.38%, 44 H2O), elemental analyses and single crystal structures (space group P1̅, a = 19.901(4) Å, b = 21.177(4) Å, c = 24.036(5) Å, α = 92.689(7)°, β = 108.73(7)°, γ = 117.137(6)°, Co9Na16O196.05P5W27, V = 8310(3) Å2 with z = 2; R2final = 0.001). The catalyst was integrated in an industrially applicable membrane electrode assembly and electrochemically characterized. Polarization studies revealed catalyst dissolution in situ, visible as a current density peak (32.2 mA/cm2, 2.2 V) with subsequent collapse (<5 mA/cm2). Galvanostatic experiments showed voltage increase from 2.5 to > 10 V at 10 mA/cm2 tracing back to acid‐mediated decomposition of the anionic POM oxide framework. We deduced insufficient thermodynamic as well as kinetic stability for industrial requirements in PEM water electrolysis.
first_indexed 2024-12-12T12:48:45Z
format Article
id doaj.art-ea02ba597052444ca18434d1971674dd
institution Directory Open Access Journal
issn 2698-5977
language English
last_indexed 2024-12-12T12:48:45Z
publishDate 2022-06-01
publisher Wiley-VCH
record_format Article
series Electrochemical Science Advances
spelling doaj.art-ea02ba597052444ca18434d1971674dd2022-12-22T00:24:03ZengWiley-VCHElectrochemical Science Advances2698-59772022-06-0123n/an/a10.1002/elsa.202100073Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densitiesKim‐Marie Vetter0Camila Aring da Silva Ramos Mauro1David Reinisch2Thomas Reichbauer3Nemanja Martić4Christian Jandl5Olaf Hinrichsen6Günter Schmid7Siemens Energy Global GmbH & Co. KG Erlangen GermanyDepartment of Chemistry Technical University of Munich Garching GermanySiemens Energy Global GmbH & Co. KG Erlangen GermanySiemens Energy Global GmbH & Co. KG Erlangen GermanySiemens Energy Global GmbH & Co. KG Erlangen GermanyCatalysis Research Center Technical University of Munich Garching GermanyDepartment of Chemistry Technical University of Munich Garching GermanySiemens Energy Global GmbH & Co. KG Erlangen GermanyAbstract We investigated the cobalt polyoxometalate catalyst Ba8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] in oxygen evolution reaction for large‐scale water electrolysis. The catalyst was characterized, yielding BET surfaces (8.37 m2/g), crystal water content (8.38%, 44 H2O), elemental analyses and single crystal structures (space group P1̅, a = 19.901(4) Å, b = 21.177(4) Å, c = 24.036(5) Å, α = 92.689(7)°, β = 108.73(7)°, γ = 117.137(6)°, Co9Na16O196.05P5W27, V = 8310(3) Å2 with z = 2; R2final = 0.001). The catalyst was integrated in an industrially applicable membrane electrode assembly and electrochemically characterized. Polarization studies revealed catalyst dissolution in situ, visible as a current density peak (32.2 mA/cm2, 2.2 V) with subsequent collapse (<5 mA/cm2). Galvanostatic experiments showed voltage increase from 2.5 to > 10 V at 10 mA/cm2 tracing back to acid‐mediated decomposition of the anionic POM oxide framework. We deduced insufficient thermodynamic as well as kinetic stability for industrial requirements in PEM water electrolysis.https://doi.org/10.1002/elsa.202100073electrochemistryindustrial current densitiesmembrane electrode assemblypolyoxometalatesstability evaluation
spellingShingle Kim‐Marie Vetter
Camila Aring da Silva Ramos Mauro
David Reinisch
Thomas Reichbauer
Nemanja Martić
Christian Jandl
Olaf Hinrichsen
Günter Schmid
Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities
Electrochemical Science Advances
electrochemistry
industrial current densities
membrane electrode assembly
polyoxometalates
stability evaluation
title Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities
title_full Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities
title_fullStr Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities
title_full_unstemmed Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities
title_short Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities
title_sort stability evaluation of earth abundant metal based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial pem electrolysis at high current densities
topic electrochemistry
industrial current densities
membrane electrode assembly
polyoxometalates
stability evaluation
url https://doi.org/10.1002/elsa.202100073
work_keys_str_mv AT kimmarievetter stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities
AT camilaaringdasilvaramosmauro stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities
AT davidreinisch stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities
AT thomasreichbauer stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities
AT nemanjamartic stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities
AT christianjandl stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities
AT olafhinrichsen stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities
AT gunterschmid stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities