Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities
Abstract We investigated the cobalt polyoxometalate catalyst Ba8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] in oxygen evolution reaction for large‐scale water electrolysis. The catalyst was characterized, yielding BET surfaces (8.37 m2/g), crystal water content (8.38%, 44 H2O), elemental analyses and single cr...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2022-06-01
|
Series: | Electrochemical Science Advances |
Subjects: | |
Online Access: | https://doi.org/10.1002/elsa.202100073 |
_version_ | 1818238884355506176 |
---|---|
author | Kim‐Marie Vetter Camila Aring da Silva Ramos Mauro David Reinisch Thomas Reichbauer Nemanja Martić Christian Jandl Olaf Hinrichsen Günter Schmid |
author_facet | Kim‐Marie Vetter Camila Aring da Silva Ramos Mauro David Reinisch Thomas Reichbauer Nemanja Martić Christian Jandl Olaf Hinrichsen Günter Schmid |
author_sort | Kim‐Marie Vetter |
collection | DOAJ |
description | Abstract We investigated the cobalt polyoxometalate catalyst Ba8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] in oxygen evolution reaction for large‐scale water electrolysis. The catalyst was characterized, yielding BET surfaces (8.37 m2/g), crystal water content (8.38%, 44 H2O), elemental analyses and single crystal structures (space group P1̅, a = 19.901(4) Å, b = 21.177(4) Å, c = 24.036(5) Å, α = 92.689(7)°, β = 108.73(7)°, γ = 117.137(6)°, Co9Na16O196.05P5W27, V = 8310(3) Å2 with z = 2; R2final = 0.001). The catalyst was integrated in an industrially applicable membrane electrode assembly and electrochemically characterized. Polarization studies revealed catalyst dissolution in situ, visible as a current density peak (32.2 mA/cm2, 2.2 V) with subsequent collapse (<5 mA/cm2). Galvanostatic experiments showed voltage increase from 2.5 to > 10 V at 10 mA/cm2 tracing back to acid‐mediated decomposition of the anionic POM oxide framework. We deduced insufficient thermodynamic as well as kinetic stability for industrial requirements in PEM water electrolysis. |
first_indexed | 2024-12-12T12:48:45Z |
format | Article |
id | doaj.art-ea02ba597052444ca18434d1971674dd |
institution | Directory Open Access Journal |
issn | 2698-5977 |
language | English |
last_indexed | 2024-12-12T12:48:45Z |
publishDate | 2022-06-01 |
publisher | Wiley-VCH |
record_format | Article |
series | Electrochemical Science Advances |
spelling | doaj.art-ea02ba597052444ca18434d1971674dd2022-12-22T00:24:03ZengWiley-VCHElectrochemical Science Advances2698-59772022-06-0123n/an/a10.1002/elsa.202100073Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densitiesKim‐Marie Vetter0Camila Aring da Silva Ramos Mauro1David Reinisch2Thomas Reichbauer3Nemanja Martić4Christian Jandl5Olaf Hinrichsen6Günter Schmid7Siemens Energy Global GmbH & Co. KG Erlangen GermanyDepartment of Chemistry Technical University of Munich Garching GermanySiemens Energy Global GmbH & Co. KG Erlangen GermanySiemens Energy Global GmbH & Co. KG Erlangen GermanySiemens Energy Global GmbH & Co. KG Erlangen GermanyCatalysis Research Center Technical University of Munich Garching GermanyDepartment of Chemistry Technical University of Munich Garching GermanySiemens Energy Global GmbH & Co. KG Erlangen GermanyAbstract We investigated the cobalt polyoxometalate catalyst Ba8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] in oxygen evolution reaction for large‐scale water electrolysis. The catalyst was characterized, yielding BET surfaces (8.37 m2/g), crystal water content (8.38%, 44 H2O), elemental analyses and single crystal structures (space group P1̅, a = 19.901(4) Å, b = 21.177(4) Å, c = 24.036(5) Å, α = 92.689(7)°, β = 108.73(7)°, γ = 117.137(6)°, Co9Na16O196.05P5W27, V = 8310(3) Å2 with z = 2; R2final = 0.001). The catalyst was integrated in an industrially applicable membrane electrode assembly and electrochemically characterized. Polarization studies revealed catalyst dissolution in situ, visible as a current density peak (32.2 mA/cm2, 2.2 V) with subsequent collapse (<5 mA/cm2). Galvanostatic experiments showed voltage increase from 2.5 to > 10 V at 10 mA/cm2 tracing back to acid‐mediated decomposition of the anionic POM oxide framework. We deduced insufficient thermodynamic as well as kinetic stability for industrial requirements in PEM water electrolysis.https://doi.org/10.1002/elsa.202100073electrochemistryindustrial current densitiesmembrane electrode assemblypolyoxometalatesstability evaluation |
spellingShingle | Kim‐Marie Vetter Camila Aring da Silva Ramos Mauro David Reinisch Thomas Reichbauer Nemanja Martić Christian Jandl Olaf Hinrichsen Günter Schmid Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities Electrochemical Science Advances electrochemistry industrial current densities membrane electrode assembly polyoxometalates stability evaluation |
title | Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities |
title_full | Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities |
title_fullStr | Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities |
title_full_unstemmed | Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities |
title_short | Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities |
title_sort | stability evaluation of earth abundant metal based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial pem electrolysis at high current densities |
topic | electrochemistry industrial current densities membrane electrode assembly polyoxometalates stability evaluation |
url | https://doi.org/10.1002/elsa.202100073 |
work_keys_str_mv | AT kimmarievetter stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities AT camilaaringdasilvaramosmauro stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities AT davidreinisch stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities AT thomasreichbauer stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities AT nemanjamartic stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities AT christianjandl stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities AT olafhinrichsen stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities AT gunterschmid stabilityevaluationofearthabundantmetalbasedpolyoxometalateelectrocatalystsforoxygenevolutionreactiontowardsindustrialpemelectrolysisathighcurrentdensities |