Negative-Sample-Free Contrastive Self-Supervised Learning for Electroencephalogram-Based Motor Imagery Classification
Motor imagery-based brain-computer interface (MI-BCI) systems convert user intentions into computer commands, aiding the communication and rehabilitation of individuals with motor disabilities. Traditional MI classification relies on supervised learning; however, it faces challenges in acquiring lar...
প্রধান লেখক: | , , , |
---|---|
বিন্যাস: | প্রবন্ধ |
ভাষা: | English |
প্রকাশিত: |
IEEE
2024-01-01
|
মালা: | IEEE Access |
বিষয়গুলি: | |
অনলাইন ব্যবহার করুন: | https://ieeexplore.ieee.org/document/10680037/ |