Negative-Sample-Free Contrastive Self-Supervised Learning for Electroencephalogram-Based Motor Imagery Classification

Motor imagery-based brain-computer interface (MI-BCI) systems convert user intentions into computer commands, aiding the communication and rehabilitation of individuals with motor disabilities. Traditional MI classification relies on supervised learning; however, it faces challenges in acquiring lar...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: In-Nea Wang, Choel-Hui Lee, Hakseung Kim, Dong-Joo Kim
Μορφή: Άρθρο
Γλώσσα:English
Έκδοση: IEEE 2024-01-01
Σειρά:IEEE Access
Θέματα:
Διαθέσιμο Online:https://ieeexplore.ieee.org/document/10680037/