CuMARL: Curiosity-Based Learning in Multiagent Reinforcement Learning
In this paper, we propose a novel curiosity-based learning algorithm for Multi-agent Reinforcement Learning (MARL) to attain efficient and effective decision-making. We employ the centralized training with decentralized execution framework (CTDE) and consider that each agent has knowledge of the pri...
Main Authors: | , , , , |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
IEEE
2022-01-01
|
סדרה: | IEEE Access |
נושאים: | |
גישה מקוונת: | https://ieeexplore.ieee.org/document/9857920/ |