An Active Power Coordination Control Strategy for AC/DC Transmission Systems to Mitigate Subsequent Commutation Failures in HVDC Systems

Subsequent commutation failures (CFs) in HVDC systems will cause large-scale power flow transfer in AC/DC transmission systems and lead to overload risk in HVAC systems. In order to cope with these effects, a power coordination control strategy for the AC/DC transmission system with high-proportion...

Full description

Bibliographic Details
Main Authors: Xia Zhou, Cangbi Ding, Jianfeng Dai, Zhaowei Li, Yang Hu, Zhaohui Qie, Feng Xue
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/23/3044
Description
Summary:Subsequent commutation failures (CFs) in HVDC systems will cause large-scale power flow transfer in AC/DC transmission systems and lead to overload risk in HVAC systems. In order to cope with these effects, a power coordination control strategy for the AC/DC transmission system with high-proportion wind power is proposed. Firstly, a model of the AC/DC transmission system considering the large-scale wind farms access is established by analyzing the power transmission characteristics of the AC/DC transmission system with high-proportion wind power, and the power transmission characteristics are analyzed after subsequent CFs. Secondly, the HVDC subsequent CFs can be mitigated by adjusting DC power transmission, while the active power output of the sending-end AC system is reduced by active control of wind turbine generators (WTGs) to reduce the overload risk of the HVAC system. Finally, the proposed power coordination control strategy is simulated and verified based on the established simulation model and actual power grid, and the results show that this strategy can effectively mitigate HVDC’s subsequent CFs and reduce the overload risk in HVAC systems.
ISSN:2079-9292