MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women

Abstract Given the barriers to early detection of gestational diabetes mellitus (GDM), this study aimed to develop an artificial intelligence (AI)-based prediction model for GDM in pregnant Mexican women. Data were retrieved from 1709 pregnant women who participated in the multicenter prospective co...

Full description

Bibliographic Details
Main Authors: Héctor Gallardo-Rincón, María Jesús Ríos-Blancas, Janinne Ortega-Montiel, Alejandra Montoya, Luis Alberto Martinez-Juarez, Julieta Lomelín-Gascón, Rodrigo Saucedo-Martínez, Ricardo Mújica-Rosales, Victoria Galicia-Hernández, Linda Morales-Juárez, Lucía Marcela Illescas-Correa, Ixel Lorena Ruiz-Cabrera, Daniel Alberto Díaz-Martínez, Francisco Javier Magos-Vázquez, Edwin Oswaldo Vargas Ávila, Alejandro Efraín Benitez-Herrera, Diana Reyes-Gómez, María Concepción Carmona-Ramos, Laura Hernández-González, Oscar Romero-Islas, Enrique Reyes Muñoz, Roberto Tapia-Conyer
Format: Article
Language:English
Published: Nature Portfolio 2023-04-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-34126-7
_version_ 1827956859006353408
author Héctor Gallardo-Rincón
María Jesús Ríos-Blancas
Janinne Ortega-Montiel
Alejandra Montoya
Luis Alberto Martinez-Juarez
Julieta Lomelín-Gascón
Rodrigo Saucedo-Martínez
Ricardo Mújica-Rosales
Victoria Galicia-Hernández
Linda Morales-Juárez
Lucía Marcela Illescas-Correa
Ixel Lorena Ruiz-Cabrera
Daniel Alberto Díaz-Martínez
Francisco Javier Magos-Vázquez
Edwin Oswaldo Vargas Ávila
Alejandro Efraín Benitez-Herrera
Diana Reyes-Gómez
María Concepción Carmona-Ramos
Laura Hernández-González
Oscar Romero-Islas
Enrique Reyes Muñoz
Roberto Tapia-Conyer
author_facet Héctor Gallardo-Rincón
María Jesús Ríos-Blancas
Janinne Ortega-Montiel
Alejandra Montoya
Luis Alberto Martinez-Juarez
Julieta Lomelín-Gascón
Rodrigo Saucedo-Martínez
Ricardo Mújica-Rosales
Victoria Galicia-Hernández
Linda Morales-Juárez
Lucía Marcela Illescas-Correa
Ixel Lorena Ruiz-Cabrera
Daniel Alberto Díaz-Martínez
Francisco Javier Magos-Vázquez
Edwin Oswaldo Vargas Ávila
Alejandro Efraín Benitez-Herrera
Diana Reyes-Gómez
María Concepción Carmona-Ramos
Laura Hernández-González
Oscar Romero-Islas
Enrique Reyes Muñoz
Roberto Tapia-Conyer
author_sort Héctor Gallardo-Rincón
collection DOAJ
description Abstract Given the barriers to early detection of gestational diabetes mellitus (GDM), this study aimed to develop an artificial intelligence (AI)-based prediction model for GDM in pregnant Mexican women. Data were retrieved from 1709 pregnant women who participated in the multicenter prospective cohort study ‘Cuido mi embarazo’. A machine-learning-driven method was used to select the best predictive variables for GDM risk: age, family history of type 2 diabetes, previous diagnosis of hypertension, pregestational body mass index, gestational week, parity, birth weight of last child, and random capillary glucose. An artificial neural network approach was then used to build the model, which achieved a high level of accuracy (70.3%) and sensitivity (83.3%) for identifying women at high risk of developing GDM. This AI-based model will be applied throughout Mexico to improve the timing and quality of GDM interventions. Given the ease of obtaining the model variables, this model is expected to be clinically strategic, allowing prioritization of preventative treatment and promising a paradigm shift in prevention and primary healthcare during pregnancy. This AI model uses variables that are easily collected to identify pregnant women at risk of developing GDM with a high level of accuracy and precision.
first_indexed 2024-04-09T15:11:15Z
format Article
id doaj.art-ea412e30f77a487496d69ca43924194c
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-04-09T15:11:15Z
publishDate 2023-04-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-ea412e30f77a487496d69ca43924194c2023-04-30T11:13:37ZengNature PortfolioScientific Reports2045-23222023-04-0113111110.1038/s41598-023-34126-7MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican womenHéctor Gallardo-Rincón0María Jesús Ríos-Blancas1Janinne Ortega-Montiel2Alejandra Montoya3Luis Alberto Martinez-Juarez4Julieta Lomelín-Gascón5Rodrigo Saucedo-Martínez6Ricardo Mújica-Rosales7Victoria Galicia-Hernández8Linda Morales-Juárez9Lucía Marcela Illescas-Correa10Ixel Lorena Ruiz-Cabrera11Daniel Alberto Díaz-Martínez12Francisco Javier Magos-Vázquez13Edwin Oswaldo Vargas Ávila14Alejandro Efraín Benitez-Herrera15Diana Reyes-Gómez16María Concepción Carmona-Ramos17Laura Hernández-González18Oscar Romero-Islas19Enrique Reyes Muñoz20Roberto Tapia-Conyer21University of Guadalajara, Health Sciences University CenterCarlos Slim FoundationCarlos Slim FoundationCarlos Slim FoundationCarlos Slim FoundationCarlos Slim FoundationCarlos Slim FoundationCarlos Slim FoundationCarlos Slim FoundationCarlos Slim FoundationMaternal and Childhood Research Center (CIMIGEN)Maternal and Childhood Research Center (CIMIGEN)Ministry of Health of the State of GuanajuatoMinistry of Health of the State of GuanajuatoMinistry of Health of the State of GuanajuatoMinistry of Health of the State of Hidalgo, Fraccionamiento Puerta de HierroMinistry of Health of the State of Hidalgo, Fraccionamiento Puerta de HierroMinistry of Health of the State of Hidalgo, Fraccionamiento Puerta de HierroMinistry of Health of the State of Hidalgo, Fraccionamiento Puerta de HierroMinistry of Health of the State of Hidalgo, Fraccionamiento Puerta de HierroDepartment of Endocrinology, National Institute of PerinatologySchool of Medicine, National Autonomous University of MexicoAbstract Given the barriers to early detection of gestational diabetes mellitus (GDM), this study aimed to develop an artificial intelligence (AI)-based prediction model for GDM in pregnant Mexican women. Data were retrieved from 1709 pregnant women who participated in the multicenter prospective cohort study ‘Cuido mi embarazo’. A machine-learning-driven method was used to select the best predictive variables for GDM risk: age, family history of type 2 diabetes, previous diagnosis of hypertension, pregestational body mass index, gestational week, parity, birth weight of last child, and random capillary glucose. An artificial neural network approach was then used to build the model, which achieved a high level of accuracy (70.3%) and sensitivity (83.3%) for identifying women at high risk of developing GDM. This AI-based model will be applied throughout Mexico to improve the timing and quality of GDM interventions. Given the ease of obtaining the model variables, this model is expected to be clinically strategic, allowing prioritization of preventative treatment and promising a paradigm shift in prevention and primary healthcare during pregnancy. This AI model uses variables that are easily collected to identify pregnant women at risk of developing GDM with a high level of accuracy and precision.https://doi.org/10.1038/s41598-023-34126-7
spellingShingle Héctor Gallardo-Rincón
María Jesús Ríos-Blancas
Janinne Ortega-Montiel
Alejandra Montoya
Luis Alberto Martinez-Juarez
Julieta Lomelín-Gascón
Rodrigo Saucedo-Martínez
Ricardo Mújica-Rosales
Victoria Galicia-Hernández
Linda Morales-Juárez
Lucía Marcela Illescas-Correa
Ixel Lorena Ruiz-Cabrera
Daniel Alberto Díaz-Martínez
Francisco Javier Magos-Vázquez
Edwin Oswaldo Vargas Ávila
Alejandro Efraín Benitez-Herrera
Diana Reyes-Gómez
María Concepción Carmona-Ramos
Laura Hernández-González
Oscar Romero-Islas
Enrique Reyes Muñoz
Roberto Tapia-Conyer
MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
Scientific Reports
title MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
title_full MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
title_fullStr MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
title_full_unstemmed MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
title_short MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
title_sort mido gdm an innovative artificial intelligence based prediction model for the development of gestational diabetes in mexican women
url https://doi.org/10.1038/s41598-023-34126-7
work_keys_str_mv AT hectorgallardorincon midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT mariajesusriosblancas midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT janinneortegamontiel midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT alejandramontoya midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT luisalbertomartinezjuarez midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT julietalomelingascon midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT rodrigosaucedomartinez midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT ricardomujicarosales midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT victoriagaliciahernandez midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT lindamoralesjuarez midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT luciamarcelaillescascorrea midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT ixellorenaruizcabrera midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT danielalbertodiazmartinez midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT franciscojaviermagosvazquez midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT edwinoswaldovargasavila midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT alejandroefrainbenitezherrera midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT dianareyesgomez midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT mariaconcepcioncarmonaramos midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT laurahernandezgonzalez midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT oscarromeroislas midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT enriquereyesmunoz midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT robertotapiaconyer midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen