On exceptional Lie geometries

Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an...

Full description

Bibliographic Details
Main Authors: Anneleen De Schepper, Jeroen Schillewaert, Hendrik Van Maldeghem, Magali Victoor
Format: Article
Language:English
Published: Cambridge University Press 2021-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509420000572/type/journal_article
_version_ 1811156210750062592
author Anneleen De Schepper
Jeroen Schillewaert
Hendrik Van Maldeghem
Magali Victoor
author_facet Anneleen De Schepper
Jeroen Schillewaert
Hendrik Van Maldeghem
Magali Victoor
author_sort Anneleen De Schepper
collection DOAJ
description Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an appendix, we extend our result to the locally disconnected case and discuss the locally disconnected case of some other well-known characterizations.
first_indexed 2024-04-10T04:47:43Z
format Article
id doaj.art-ea655dd3eca3452f8c99a94a1357e01b
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-04-10T04:47:43Z
publishDate 2021-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-ea655dd3eca3452f8c99a94a1357e01b2023-03-09T12:34:52ZengCambridge University PressForum of Mathematics, Sigma2050-50942021-01-01910.1017/fms.2020.57On exceptional Lie geometriesAnneleen De Schepper0Jeroen Schillewaert1Hendrik Van Maldeghem2Magali Victoor3Department of Mathematics, Ghent University, 9000 Ghent Belgium; E-mail: .Department of Mathematics, University of Auckland, 1010 Auckland New Zealand; E-mail: .Department of Mathematics, Ghent University, 9000 Ghent Belgium; E-mail: .Department of Mathematics, Ghent University, 9000 Ghent Belgium; E-mail: .Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an appendix, we extend our result to the locally disconnected case and discuss the locally disconnected case of some other well-known characterizations.https://www.cambridge.org/core/product/identifier/S2050509420000572/type/journal_article51E2451B2520E42
spellingShingle Anneleen De Schepper
Jeroen Schillewaert
Hendrik Van Maldeghem
Magali Victoor
On exceptional Lie geometries
Forum of Mathematics, Sigma
51E24
51B25
20E42
title On exceptional Lie geometries
title_full On exceptional Lie geometries
title_fullStr On exceptional Lie geometries
title_full_unstemmed On exceptional Lie geometries
title_short On exceptional Lie geometries
title_sort on exceptional lie geometries
topic 51E24
51B25
20E42
url https://www.cambridge.org/core/product/identifier/S2050509420000572/type/journal_article
work_keys_str_mv AT anneleendeschepper onexceptionalliegeometries
AT jeroenschillewaert onexceptionalliegeometries
AT hendrikvanmaldeghem onexceptionalliegeometries
AT magalivictoor onexceptionalliegeometries