The minimum number of multiplicity 1 eigenvalues among real symmetric matrices whose graph is a nonlinear tree

In the study of eigenvalues, multiplicities, and graphs, the minimum number of multiplicities equal to 1 in a real symmetric matrix with graph G, U(G), is an important constraint on the possible multiplicity lists among matrices in 𝒮(G). Of course, the structure of G must determine U(G), but, even f...

Full description

Bibliographic Details
Main Authors: Ding Wenxuan, Johnson Charles R.
Format: Article
Language:English
Published: De Gruyter 2021-12-01
Series:Special Matrices
Subjects:
Online Access:https://doi.org/10.1515/spma-2021-0158
Description
Summary:In the study of eigenvalues, multiplicities, and graphs, the minimum number of multiplicities equal to 1 in a real symmetric matrix with graph G, U(G), is an important constraint on the possible multiplicity lists among matrices in 𝒮(G). Of course, the structure of G must determine U(G), but, even for trees, this linkage has proven elusive. If T is a tree, U(T) is at least 2, but may be much greater. For linear trees, recent work has improved our understanding. Here, we consider nonlinear trees, segregated by diameter. This leads to a new combinatorial construct called a core, for which we are able to calculate U(T). We suspect this bounds U(T) for all nonlinear trees with the given core. In the process, we develop considerable combinatorial information about cores.
ISSN:2300-7451