DEPENDENCE OF AN ELECTRIC-CENTRIFUGAL PUMP HEAT STATE ON ENGINE ROTATION FREQUENCY
Relevance. Nowadays in the oil-producing fields of the Russian Federation the control stations of electric centrifugal pumps are widely used. They have the ability to change the engine speed. Such control stations can be used to increase or decrease the rotational speed of the installation to optimi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Tomsk Polytechnic University
2019-12-01
|
Series: | Известия Томского политехнического университета: Инжиниринг георесурсов |
Subjects: | |
Online Access: | http://izvestiya.tpu.ru/archive/article/view/2406/2126 |
Summary: | Relevance. Nowadays in the oil-producing fields of the Russian Federation the control stations of electric centrifugal pumps are widely used. They have the ability to change the engine speed. Such control stations can be used to increase or decrease the rotational speed of the installation to optimize the operation of the «centrifugal pump installation – formation» system. Accounting for thermal condition of the electric centrifugal pump installation is important for optimizing its operation. The use of asynchronous electric motors, which allows regulating the rotational speed of the drive without overheating the immersion part, improves the operational performance of immersion units. To date, there are no comprehensive theoretical studies on application of the control station with an adjustable frequency converter voltage. The aim of the research is to study thermal regime of a submersible installation depending on content of gas accumulated at the centrifugal pump intake. Object: installation of electric centrifugal submersible pumps (namely, their thermal regime). Results. The authors have studied the experimental results of operation of an electric centrifugal pump of the type ODI RA7-110-1500 with gas separator at frequencies of more than 50 Hz. Such field studies were carried out to assess the production capabilities of the well. The experiments were conducted at frequencies of 50, 52, 55 Hz, taking into account the content of gas accumulated in the reservoir oil at the intake of the centrifugal pump and its temperature. The analysis of the results of the experiments showed that the pressure of the centrifugal unit does not depend on the existing gas separator. Temperature mode of the submersible installation was studied taking into account water content of the reservoir oil, saturation pressure, gas factor containing gases such as nitrogen and methane, and pressure at the pump intake. It was established by analytical calculations that high content of free gas in the annular space of an oil well leads to increase in temperature mode of a submersible installation. |
---|---|
ISSN: | 2500-1019 2413-1830 |