Combination of stem cell-derived secretome from human exfoliated deciduous teeth with Yemeni Sidr honey on cell viability and migration: an in vitro study

Abstract Introduction Bone diseases have a profound global impact, especially when the body’s innate regenerative capacity falls short in the face of extensive damage. Stem cells from human exfoliated deciduous teeth (SHEDs), discovered in 2003, offer a promising solution for tissue repair, as they...

Full description

Bibliographic Details
Main Author: Mona Abdulrahman Abdullah Al-Hadi
Format: Article
Language:English
Published: Nature Publishing Group 2024-03-01
Series:BDJ Open
Online Access:https://doi.org/10.1038/s41405-024-00197-5
_version_ 1797259113115156480
author Mona Abdulrahman Abdullah Al-Hadi
author_facet Mona Abdulrahman Abdullah Al-Hadi
author_sort Mona Abdulrahman Abdullah Al-Hadi
collection DOAJ
description Abstract Introduction Bone diseases have a profound global impact, especially when the body’s innate regenerative capacity falls short in the face of extensive damage. Stem cells from human exfoliated deciduous teeth (SHEDs), discovered in 2003, offer a promising solution for tissue repair, as they self-renew naturally and are easily obtainable. Mesenchymal stem cells (MSCs), including SHEDs, are believed to promote tissue regeneration by releasing growth factors, collectively known as the secretome. Aims This study explored the potential of combining SHED-derived secretome with Yemeni Sidr honey to improve osteoblast and fibroblast cell viability and migration. Materials and methods The experiment involved treating cell cultures of two types of rat cell lines - 7F2 osteoblast and BHK-21 fibroblast immortalized cells - with SHED-derived secretome and Yemeni Sidr honey. After the treatment, cell viability was measured using the MTT assay, which calculates OD at 590 nm. Additionally, the scratch assay was conducted to evaluate cell migration, and ImageJ software was used for data processing. Results The findings indicated that combining SHED-derived secretome and Yemeni Sidr honey enhanced osteoblast and fibroblast cell viability and migration. Furthermore, the study highlighted the difference in the stimulative potential of SHED-derived secretome, Yemeni Sidr honey, and their combination, on the viability and migration of the cultured cells. Conclusion The research concludes that combining SHED-derived secretome with Yemeni Sidr honey has the potential to promote cell viability and migration in in-vitro settings. The synergistic application of these substances has been found to be more effective -when combined in a dose-dependent manner- than their counterparts. Overall, the current study serves as a foundation for further investigations to establish if the explored substance has any useful clinical applications.
first_indexed 2024-04-24T23:04:16Z
format Article
id doaj.art-ead4e254dcea44cb8169c9f0c95271e1
institution Directory Open Access Journal
issn 2056-807X
language English
last_indexed 2024-04-24T23:04:16Z
publishDate 2024-03-01
publisher Nature Publishing Group
record_format Article
series BDJ Open
spelling doaj.art-ead4e254dcea44cb8169c9f0c95271e12024-03-17T12:35:56ZengNature Publishing GroupBDJ Open2056-807X2024-03-0110111610.1038/s41405-024-00197-5Combination of stem cell-derived secretome from human exfoliated deciduous teeth with Yemeni Sidr honey on cell viability and migration: an in vitro studyMona Abdulrahman Abdullah Al-Hadi0Faculty of Dentistry, Airlangga UniversityAbstract Introduction Bone diseases have a profound global impact, especially when the body’s innate regenerative capacity falls short in the face of extensive damage. Stem cells from human exfoliated deciduous teeth (SHEDs), discovered in 2003, offer a promising solution for tissue repair, as they self-renew naturally and are easily obtainable. Mesenchymal stem cells (MSCs), including SHEDs, are believed to promote tissue regeneration by releasing growth factors, collectively known as the secretome. Aims This study explored the potential of combining SHED-derived secretome with Yemeni Sidr honey to improve osteoblast and fibroblast cell viability and migration. Materials and methods The experiment involved treating cell cultures of two types of rat cell lines - 7F2 osteoblast and BHK-21 fibroblast immortalized cells - with SHED-derived secretome and Yemeni Sidr honey. After the treatment, cell viability was measured using the MTT assay, which calculates OD at 590 nm. Additionally, the scratch assay was conducted to evaluate cell migration, and ImageJ software was used for data processing. Results The findings indicated that combining SHED-derived secretome and Yemeni Sidr honey enhanced osteoblast and fibroblast cell viability and migration. Furthermore, the study highlighted the difference in the stimulative potential of SHED-derived secretome, Yemeni Sidr honey, and their combination, on the viability and migration of the cultured cells. Conclusion The research concludes that combining SHED-derived secretome with Yemeni Sidr honey has the potential to promote cell viability and migration in in-vitro settings. The synergistic application of these substances has been found to be more effective -when combined in a dose-dependent manner- than their counterparts. Overall, the current study serves as a foundation for further investigations to establish if the explored substance has any useful clinical applications.https://doi.org/10.1038/s41405-024-00197-5
spellingShingle Mona Abdulrahman Abdullah Al-Hadi
Combination of stem cell-derived secretome from human exfoliated deciduous teeth with Yemeni Sidr honey on cell viability and migration: an in vitro study
BDJ Open
title Combination of stem cell-derived secretome from human exfoliated deciduous teeth with Yemeni Sidr honey on cell viability and migration: an in vitro study
title_full Combination of stem cell-derived secretome from human exfoliated deciduous teeth with Yemeni Sidr honey on cell viability and migration: an in vitro study
title_fullStr Combination of stem cell-derived secretome from human exfoliated deciduous teeth with Yemeni Sidr honey on cell viability and migration: an in vitro study
title_full_unstemmed Combination of stem cell-derived secretome from human exfoliated deciduous teeth with Yemeni Sidr honey on cell viability and migration: an in vitro study
title_short Combination of stem cell-derived secretome from human exfoliated deciduous teeth with Yemeni Sidr honey on cell viability and migration: an in vitro study
title_sort combination of stem cell derived secretome from human exfoliated deciduous teeth with yemeni sidr honey on cell viability and migration an in vitro study
url https://doi.org/10.1038/s41405-024-00197-5
work_keys_str_mv AT monaabdulrahmanabdullahalhadi combinationofstemcellderivedsecretomefromhumanexfoliateddeciduousteethwithyemenisidrhoneyoncellviabilityandmigrationaninvitrostudy