Inference of an Integrative, Executable Network for Rheumatoid Arthritis Combining Data-Driven Machine Learning Approaches and a State-of-the-Art Mechanistic Disease Map

Rheumatoid arthritis (RA) is a multifactorial, complex autoimmune disease that involves various genetic, environmental, and epigenetic factors. Systems biology approaches provide the means to study complex diseases by integrating different layers of biological information. Combining multiple data ty...

Full description

Bibliographic Details
Main Authors: Quentin Miagoux, Vidisha Singh, Dereck de Mézquita, Valerie Chaudru, Mohamed Elati, Elisabeth Petit-Teixeira, Anna Niarakis
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Journal of Personalized Medicine
Subjects:
Online Access:https://www.mdpi.com/2075-4426/11/8/785
_version_ 1797523336055488512
author Quentin Miagoux
Vidisha Singh
Dereck de Mézquita
Valerie Chaudru
Mohamed Elati
Elisabeth Petit-Teixeira
Anna Niarakis
author_facet Quentin Miagoux
Vidisha Singh
Dereck de Mézquita
Valerie Chaudru
Mohamed Elati
Elisabeth Petit-Teixeira
Anna Niarakis
author_sort Quentin Miagoux
collection DOAJ
description Rheumatoid arthritis (RA) is a multifactorial, complex autoimmune disease that involves various genetic, environmental, and epigenetic factors. Systems biology approaches provide the means to study complex diseases by integrating different layers of biological information. Combining multiple data types can help compensate for missing or conflicting information and limit the possibility of false positives. In this work, we aim to unravel mechanisms governing the regulation of key transcription factors in RA and derive patient-specific models to gain more insights into the disease heterogeneity and the response to treatment. We first use publicly available transcriptomic datasets (peripheral blood) relative to RA and machine learning to create an RA-specific transcription factor (TF) co-regulatory network. The TF cooperativity network is subsequently enriched in signalling cascades and upstream regulators using a state-of-the-art, RA-specific molecular map. Then, the integrative network is used as a template to analyse patients’ data regarding their response to anti-TNF treatment and identify master regulators and upstream cascades affected by the treatment. Finally, we use the Boolean formalism to simulate <i>in silico</i> subparts of the integrated network and identify combinations and conditions that can switch on or off the identified TFs, mimicking the effects of single and combined perturbations.
first_indexed 2024-03-10T08:41:30Z
format Article
id doaj.art-eadaea12768b445da03b3292ced8c994
institution Directory Open Access Journal
issn 2075-4426
language English
last_indexed 2024-03-10T08:41:30Z
publishDate 2021-08-01
publisher MDPI AG
record_format Article
series Journal of Personalized Medicine
spelling doaj.art-eadaea12768b445da03b3292ced8c9942023-11-22T08:19:20ZengMDPI AGJournal of Personalized Medicine2075-44262021-08-0111878510.3390/jpm11080785Inference of an Integrative, Executable Network for Rheumatoid Arthritis Combining Data-Driven Machine Learning Approaches and a State-of-the-Art Mechanistic Disease MapQuentin Miagoux0Vidisha Singh1Dereck de Mézquita2Valerie Chaudru3Mohamed Elati4Elisabeth Petit-Teixeira5Anna Niarakis6Université Paris-Saclay, Univ Evry, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, 91057 Evry, FranceUniversité Paris-Saclay, Univ Evry, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, 91057 Evry, FranceUniversité Paris-Saclay, Univ Evry, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, 91057 Evry, FranceUniversité Paris-Saclay, Univ Evry, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, 91057 Evry, FranceCANTHER, University of Lille, CNRS UMR 1277, Inserm U9020, 59045 Lille, FranceUniversité Paris-Saclay, Univ Evry, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, 91057 Evry, FranceUniversité Paris-Saclay, Univ Evry, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, 91057 Evry, FranceRheumatoid arthritis (RA) is a multifactorial, complex autoimmune disease that involves various genetic, environmental, and epigenetic factors. Systems biology approaches provide the means to study complex diseases by integrating different layers of biological information. Combining multiple data types can help compensate for missing or conflicting information and limit the possibility of false positives. In this work, we aim to unravel mechanisms governing the regulation of key transcription factors in RA and derive patient-specific models to gain more insights into the disease heterogeneity and the response to treatment. We first use publicly available transcriptomic datasets (peripheral blood) relative to RA and machine learning to create an RA-specific transcription factor (TF) co-regulatory network. The TF cooperativity network is subsequently enriched in signalling cascades and upstream regulators using a state-of-the-art, RA-specific molecular map. Then, the integrative network is used as a template to analyse patients’ data regarding their response to anti-TNF treatment and identify master regulators and upstream cascades affected by the treatment. Finally, we use the Boolean formalism to simulate <i>in silico</i> subparts of the integrated network and identify combinations and conditions that can switch on or off the identified TFs, mimicking the effects of single and combined perturbations.https://www.mdpi.com/2075-4426/11/8/785network inferenceintegrative biologyrheumatoid arthritissignaling cascadesgene regulationtranscription factors
spellingShingle Quentin Miagoux
Vidisha Singh
Dereck de Mézquita
Valerie Chaudru
Mohamed Elati
Elisabeth Petit-Teixeira
Anna Niarakis
Inference of an Integrative, Executable Network for Rheumatoid Arthritis Combining Data-Driven Machine Learning Approaches and a State-of-the-Art Mechanistic Disease Map
Journal of Personalized Medicine
network inference
integrative biology
rheumatoid arthritis
signaling cascades
gene regulation
transcription factors
title Inference of an Integrative, Executable Network for Rheumatoid Arthritis Combining Data-Driven Machine Learning Approaches and a State-of-the-Art Mechanistic Disease Map
title_full Inference of an Integrative, Executable Network for Rheumatoid Arthritis Combining Data-Driven Machine Learning Approaches and a State-of-the-Art Mechanistic Disease Map
title_fullStr Inference of an Integrative, Executable Network for Rheumatoid Arthritis Combining Data-Driven Machine Learning Approaches and a State-of-the-Art Mechanistic Disease Map
title_full_unstemmed Inference of an Integrative, Executable Network for Rheumatoid Arthritis Combining Data-Driven Machine Learning Approaches and a State-of-the-Art Mechanistic Disease Map
title_short Inference of an Integrative, Executable Network for Rheumatoid Arthritis Combining Data-Driven Machine Learning Approaches and a State-of-the-Art Mechanistic Disease Map
title_sort inference of an integrative executable network for rheumatoid arthritis combining data driven machine learning approaches and a state of the art mechanistic disease map
topic network inference
integrative biology
rheumatoid arthritis
signaling cascades
gene regulation
transcription factors
url https://www.mdpi.com/2075-4426/11/8/785
work_keys_str_mv AT quentinmiagoux inferenceofanintegrativeexecutablenetworkforrheumatoidarthritiscombiningdatadrivenmachinelearningapproachesandastateoftheartmechanisticdiseasemap
AT vidishasingh inferenceofanintegrativeexecutablenetworkforrheumatoidarthritiscombiningdatadrivenmachinelearningapproachesandastateoftheartmechanisticdiseasemap
AT dereckdemezquita inferenceofanintegrativeexecutablenetworkforrheumatoidarthritiscombiningdatadrivenmachinelearningapproachesandastateoftheartmechanisticdiseasemap
AT valeriechaudru inferenceofanintegrativeexecutablenetworkforrheumatoidarthritiscombiningdatadrivenmachinelearningapproachesandastateoftheartmechanisticdiseasemap
AT mohamedelati inferenceofanintegrativeexecutablenetworkforrheumatoidarthritiscombiningdatadrivenmachinelearningapproachesandastateoftheartmechanisticdiseasemap
AT elisabethpetitteixeira inferenceofanintegrativeexecutablenetworkforrheumatoidarthritiscombiningdatadrivenmachinelearningapproachesandastateoftheartmechanisticdiseasemap
AT annaniarakis inferenceofanintegrativeexecutablenetworkforrheumatoidarthritiscombiningdatadrivenmachinelearningapproachesandastateoftheartmechanisticdiseasemap