Novel Polyaniline–Silver–Sulfur Nanotube Composite as Cathode Material for Lithium–Sulfur Battery

The preparation and characterization of a polyaniline–silver–sulfur nanotube composite were reported in this paper. The polyaniline–silver nanotube composite was synthesized via an oxidation-reduction method in the sodium dodecyl sulfate (SDS) solution. After being vulcanized, the polyaniline–silver...

Full description

Bibliographic Details
Main Authors: Jing Wang, Ri-Wei Xu, Cheng-Zhong Wang, Jin-Ping Xiong
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/21/6440
Description
Summary:The preparation and characterization of a polyaniline–silver–sulfur nanotube composite were reported in this paper. The polyaniline–silver nanotube composite was synthesized via an oxidation-reduction method in the sodium dodecyl sulfate (SDS) solution. After being vulcanized, the polyaniline–silver–sulfur (Poly (AN–Ag–S)) nanotube composite was prepared as active cathode material and assembled into lithium–sulfur (Li–S) batteries with electrolyte and negative electrode materials. When the feed ratio of raw materials (aniline and AgNO3) was 2:1, the initial specific capacity of poly (AN–Ag–S) composite cells reached 1114 mAh/g. The specific capacity was kept at 573 mAh/g, and the capacity retention rate stayed above 51% after 100 cycles. The introduction of Ag into the composite cathode material can effectively solve the poor conductivity of sulfur and improve the Li–S battery performance.
ISSN:1996-1944