An alternative approach to the power series method
This article consider the classical problem of linear non-homogeneous second order Initial Value Problems with analytic coefficients. It classifies the possible kinds of analytic solutions, giving criteria for the nonexistence of analytical solutions and for the existence of multiple analytic soluti...
Main Author: | |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universidad Nacional de Trujillo
2017-12-01
|
Series: | Selecciones Matemáticas |
Subjects: | |
Online Access: | http://revistas.unitru.edu.pe/index.php/SSMM/article/view/1619/1614 |
_version_ | 1818298057708535808 |
---|---|
author | Márcio Rostirolla Adames |
author_facet | Márcio Rostirolla Adames |
author_sort | Márcio Rostirolla Adames |
collection | DOAJ |
description | This article consider the classical problem of linear non-homogeneous second order Initial Value Problems with analytic coefficients. It classifies the possible kinds of analytic solutions, giving criteria for the nonexistence of analytical solutions and for the existence of multiple analytic solutions. An alternative proof for the convergence of the power series method is given and it applies for some singular irregular points. |
first_indexed | 2024-12-13T04:29:17Z |
format | Article |
id | doaj.art-eae6115da3a446b9b47144ff54a1476a |
institution | Directory Open Access Journal |
issn | 2411-1783 2411-1783 |
language | Spanish |
last_indexed | 2024-12-13T04:29:17Z |
publishDate | 2017-12-01 |
publisher | Universidad Nacional de Trujillo |
record_format | Article |
series | Selecciones Matemáticas |
spelling | doaj.art-eae6115da3a446b9b47144ff54a1476a2022-12-21T23:59:38ZspaUniversidad Nacional de TrujilloSelecciones Matemáticas2411-17832411-17832017-12-014213915110.17268/sel.mat.2017.02.01An alternative approach to the power series methodMárcio Rostirolla Adames0Departamento de Matemática, Universidade Tecnológica Federal do ParanáThis article consider the classical problem of linear non-homogeneous second order Initial Value Problems with analytic coefficients. It classifies the possible kinds of analytic solutions, giving criteria for the nonexistence of analytical solutions and for the existence of multiple analytic solutions. An alternative proof for the convergence of the power series method is given and it applies for some singular irregular points.http://revistas.unitru.edu.pe/index.php/SSMM/article/view/1619/1614ODENon-homogeneousInitial Value ProblemPower SeriesStrong Operator Convergence |
spellingShingle | Márcio Rostirolla Adames An alternative approach to the power series method Selecciones Matemáticas ODE Non-homogeneous Initial Value Problem Power Series Strong Operator Convergence |
title | An alternative approach to the power series method |
title_full | An alternative approach to the power series method |
title_fullStr | An alternative approach to the power series method |
title_full_unstemmed | An alternative approach to the power series method |
title_short | An alternative approach to the power series method |
title_sort | alternative approach to the power series method |
topic | ODE Non-homogeneous Initial Value Problem Power Series Strong Operator Convergence |
url | http://revistas.unitru.edu.pe/index.php/SSMM/article/view/1619/1614 |
work_keys_str_mv | AT marciorostirollaadames analternativeapproachtothepowerseriesmethod AT marciorostirollaadames alternativeapproachtothepowerseriesmethod |