The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study
Herein, we considered the Schrödinger operator with a potential <i>q</i> on a disk and the map that associates to <i>q</i> the corresponding Dirichlet-to-Neumann (DtN) map. We provide some numerical and analytical results on the range of this map and its stability for the par...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/8/794 |
_version_ | 1827695812867522560 |
---|---|
author | Sagrario Lantarón Susana Merchán |
author_facet | Sagrario Lantarón Susana Merchán |
author_sort | Sagrario Lantarón |
collection | DOAJ |
description | Herein, we considered the Schrödinger operator with a potential <i>q</i> on a disk and the map that associates to <i>q</i> the corresponding Dirichlet-to-Neumann (DtN) map. We provide some numerical and analytical results on the range of this map and its stability for the particular class of one-step radial potentials. |
first_indexed | 2024-03-10T12:33:20Z |
format | Article |
id | doaj.art-eafe0e8733614c71804a7a6b21d5616d |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-10T12:33:20Z |
publishDate | 2021-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-eafe0e8733614c71804a7a6b21d5616d2023-11-21T14:28:51ZengMDPI AGMathematics2227-73902021-04-019879410.3390/math9080794The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical StudySagrario Lantarón0Susana Merchán1Departamento de Matemática e Informática Aplicadas a las Ingenierías Civil y Naval, Escuela de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Calle del Profesor Aranguren, 3, 28040 Madrid, SpainDepartamento de Matemática e Informática Aplicadas a las Ingenierías Civil y Naval, Escuela de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Calle del Profesor Aranguren, 3, 28040 Madrid, SpainHerein, we considered the Schrödinger operator with a potential <i>q</i> on a disk and the map that associates to <i>q</i> the corresponding Dirichlet-to-Neumann (DtN) map. We provide some numerical and analytical results on the range of this map and its stability for the particular class of one-step radial potentials.https://www.mdpi.com/2227-7390/9/8/794Dirichlet-to-Neumann mapSchrödinger operatorstability |
spellingShingle | Sagrario Lantarón Susana Merchán The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study Mathematics Dirichlet-to-Neumann map Schrödinger operator stability |
title | The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study |
title_full | The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study |
title_fullStr | The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study |
title_full_unstemmed | The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study |
title_short | The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study |
title_sort | dirichlet to neumann map in a disk with a one step radial potential an analytical and numerical study |
topic | Dirichlet-to-Neumann map Schrödinger operator stability |
url | https://www.mdpi.com/2227-7390/9/8/794 |
work_keys_str_mv | AT sagrariolantaron thedirichlettoneumannmapinadiskwithaonestepradialpotentialananalyticalandnumericalstudy AT susanamerchan thedirichlettoneumannmapinadiskwithaonestepradialpotentialananalyticalandnumericalstudy AT sagrariolantaron dirichlettoneumannmapinadiskwithaonestepradialpotentialananalyticalandnumericalstudy AT susanamerchan dirichlettoneumannmapinadiskwithaonestepradialpotentialananalyticalandnumericalstudy |