The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study

Herein, we considered the Schrödinger operator with a potential <i>q</i> on a disk and the map that associates to <i>q</i> the corresponding Dirichlet-to-Neumann (DtN) map. We provide some numerical and analytical results on the range of this map and its stability for the par...

Full description

Bibliographic Details
Main Authors: Sagrario Lantarón, Susana Merchán
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/8/794
_version_ 1827695812867522560
author Sagrario Lantarón
Susana Merchán
author_facet Sagrario Lantarón
Susana Merchán
author_sort Sagrario Lantarón
collection DOAJ
description Herein, we considered the Schrödinger operator with a potential <i>q</i> on a disk and the map that associates to <i>q</i> the corresponding Dirichlet-to-Neumann (DtN) map. We provide some numerical and analytical results on the range of this map and its stability for the particular class of one-step radial potentials.
first_indexed 2024-03-10T12:33:20Z
format Article
id doaj.art-eafe0e8733614c71804a7a6b21d5616d
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T12:33:20Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-eafe0e8733614c71804a7a6b21d5616d2023-11-21T14:28:51ZengMDPI AGMathematics2227-73902021-04-019879410.3390/math9080794The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical StudySagrario Lantarón0Susana Merchán1Departamento de Matemática e Informática Aplicadas a las Ingenierías Civil y Naval, Escuela de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Calle del Profesor Aranguren, 3, 28040 Madrid, SpainDepartamento de Matemática e Informática Aplicadas a las Ingenierías Civil y Naval, Escuela de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Calle del Profesor Aranguren, 3, 28040 Madrid, SpainHerein, we considered the Schrödinger operator with a potential <i>q</i> on a disk and the map that associates to <i>q</i> the corresponding Dirichlet-to-Neumann (DtN) map. We provide some numerical and analytical results on the range of this map and its stability for the particular class of one-step radial potentials.https://www.mdpi.com/2227-7390/9/8/794Dirichlet-to-Neumann mapSchrödinger operatorstability
spellingShingle Sagrario Lantarón
Susana Merchán
The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study
Mathematics
Dirichlet-to-Neumann map
Schrödinger operator
stability
title The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study
title_full The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study
title_fullStr The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study
title_full_unstemmed The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study
title_short The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study
title_sort dirichlet to neumann map in a disk with a one step radial potential an analytical and numerical study
topic Dirichlet-to-Neumann map
Schrödinger operator
stability
url https://www.mdpi.com/2227-7390/9/8/794
work_keys_str_mv AT sagrariolantaron thedirichlettoneumannmapinadiskwithaonestepradialpotentialananalyticalandnumericalstudy
AT susanamerchan thedirichlettoneumannmapinadiskwithaonestepradialpotentialananalyticalandnumericalstudy
AT sagrariolantaron dirichlettoneumannmapinadiskwithaonestepradialpotentialananalyticalandnumericalstudy
AT susanamerchan dirichlettoneumannmapinadiskwithaonestepradialpotentialananalyticalandnumericalstudy