Hydrophilic fillers for anione exchange membranes of alkaline water electrolyzers

Alkaline water electrolysers are widespread in many industries, including systems with hydrogen cycle of energy storage. One of the problems of modern alkaline water electrolysers is insufficient purity of generated electrolysis gases relative to electrolysis systems with solid-polymer electrolyte....

Full description

Bibliographic Details
Main Authors: Kuleshov V.N., Kurochkin S.V., Kuleshov N.V., Gavriluk A.A., Klimova M.A., Smirnov S.E.
Format: Article
Language:English
Published: EDP Sciences 2023-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/26/e3sconf_uesf2023_02030.pdf
Description
Summary:Alkaline water electrolysers are widespread in many industries, including systems with hydrogen cycle of energy storage. One of the problems of modern alkaline water electrolysers is insufficient purity of generated electrolysis gases relative to electrolysis systems with solid-polymer electrolyte. In this regard, work on modification of existing porous diaphragms is actively carried out. One new area of research is the impregnation of new hydrophilic fillers into the composition of existing diaphragms and the transition to ion-solvate membranes. In this work the synthesis of zirconium hydroxide hydrogel inside a porous diaphragm with the hydrophilic filler TiO2 was carried out. This synthesis makes it possible to obtain a membrane with anion-exchange properties. A possible mechanism of OH- hydroxyl ion transfer by immobilized K+ ion was also proposed. The obtained results demonstrated the resistance of the membrane to concentrated alkaline solutions.
ISSN:2267-1242