Application of Heuristic Combinations within a Hyper-Heuristic Framework for Exam Timetabling

Examination Timetabling Problem is one of the optimization and combinatorial problems. It is proved to be a non-deterministic polynomial (NP)-hard problem. On a large scale of data, the examination timetabling problem becomes a complex problem and takes time if it solved manually. Therefore, heurist...

Full description

Bibliographic Details
Main Authors: Gabriella Icasia, Raras Tyasnurita, Etria Sepwardhani Purba
Format: Article
Language:English
Published: Ikatan Ahli Informatika Indonesia 2020-08-01
Series:Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Subjects:
Online Access:http://jurnal.iaii.or.id/index.php/RESTI/article/view/2066
Description
Summary:Examination Timetabling Problem is one of the optimization and combinatorial problems. It is proved to be a non-deterministic polynomial (NP)-hard problem. On a large scale of data, the examination timetabling problem becomes a complex problem and takes time if it solved manually. Therefore, heuristics exist to provide reasonable enough solutions and meet the constraints of the problem. In this study, a real-world dataset of Examination Timetabling (Toronto dataset) is solved using a Hill-Climbing and Tabu Search algorithm. Different from the approach in the literature, Tabu Search is a meta-heuristic method, but we implemented a Tabu Search within the hyper-heuristic framework. The main objective of this study is to provide a better understanding of the application of Hill-Climbing and Tabu Search in hyper-heuristics to solve timetabling problems. The results of the experiments show that Hill-Climbing and Tabu Search succeeded in automating the timetabling process by reducing the penalty 18-65% from the initial solution. Besides, we tested the algorithms within 10,000-100,000 iterations, and the results were compared with a previous study. Most of the solutions generated from this experiment are better compared to the previous study that also used Tabu Search algorithm.
ISSN:2580-0760