Recognition of Emotion by Brain Connectivity and Eye Movement

Simultaneous activation of brain regions (i.e., brain connection features) is an essential mechanism of brain activity in emotion recognition of visual content. The occipital cortex of the brain is involved in visual processing, but the frontal lobe processes cranial nerve signals to control higher...

Full description

Bibliographic Details
Main Authors: Jing Zhang, Sung Park, Ayoung Cho, Mincheol Whang
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/18/6736
Description
Summary:Simultaneous activation of brain regions (i.e., brain connection features) is an essential mechanism of brain activity in emotion recognition of visual content. The occipital cortex of the brain is involved in visual processing, but the frontal lobe processes cranial nerve signals to control higher emotions. However, recognition of emotion in visual content merits the analysis of eye movement features, because the pupils, iris, and other eye structures are connected to the nerves of the brain. We hypothesized that when viewing video content, the activation features of brain connections are significantly related to eye movement characteristics. We investigated the relationship between brain connectivity (strength and directionality) and eye movement features (left and right pupils, saccades, and fixations) when 47 participants viewed an emotion-eliciting video on a two-dimensional emotion model (valence and arousal). We found that the connectivity eigenvalues of the long-distance prefrontal lobe, temporal lobe, parietal lobe, and center are related to cognitive activity involving high valance. In addition, saccade movement was correlated with long-distance occipital-frontal connectivity. Finally, short-distance connectivity results showed emotional fluctuations caused by unconscious stimulation.
ISSN:1424-8220