Simulating heat and CO<sub>2</sub> fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductance

<p>The Surface Urban Energy and Water Balance Scheme (SUEWS) has recently been introduced to include a bottom-up approach to modeling carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) emissions and uptake in urban areas. In this study, SUEWS...

Full description

Bibliographic Details
Main Authors: Y. Zheng, M. Havu, H. Liu, X. Cheng, Y. Wen, H. S. Lee, J. Ahongshangbam, L. Järvi
Format: Article
Language:English
Published: Copernicus Publications 2023-08-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/16/4551/2023/gmd-16-4551-2023.pdf
_version_ 1797745792971177984
author Y. Zheng
Y. Zheng
Y. Zheng
M. Havu
H. Liu
X. Cheng
X. Cheng
Y. Wen
H. S. Lee
H. S. Lee
J. Ahongshangbam
L. Järvi
L. Järvi
author_facet Y. Zheng
Y. Zheng
Y. Zheng
M. Havu
H. Liu
X. Cheng
X. Cheng
Y. Wen
H. S. Lee
H. S. Lee
J. Ahongshangbam
L. Järvi
L. Järvi
author_sort Y. Zheng
collection DOAJ
description <p>The Surface Urban Energy and Water Balance Scheme (SUEWS) has recently been introduced to include a bottom-up approach to modeling carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) emissions and uptake in urban areas. In this study, SUEWS is evaluated against the measured eddy covariance (EC) turbulent fluxes of sensible heat (<span class="inline-formula"><i>Q</i><sub>H</sub></span>), latent heat (<span class="inline-formula"><i>Q</i><sub>E</sub></span>), and <span class="inline-formula">CO<sub>2</sub></span> (<span class="inline-formula"><i>F</i><sub>C</sub></span>) in a densely built neighborhood in Beijing. The model sensitivity to maximum conductance (<span class="inline-formula"><i>g</i><sub>max</sub></span>) and leaf area index (<span class="inline-formula">LAI</span>) is examined. Site-specific <span class="inline-formula"><i>g</i><sub>max</sub></span> is obtained from observations over local vegetation species, and <span class="inline-formula">LAI</span> parameters are extracted by optimization with remotely sensed <span class="inline-formula">LAI</span> obtained from a Landsat 7 data product. For the simulation of anthropogenic <span class="inline-formula">CO<sub>2</sub></span> components, local traffic and population data are collected. In the model evaluation, the mismatch between the measurement source area and simulation domain is also considered.</p> <p>Using the optimized <span class="inline-formula"><i>g</i><sub>max</sub></span> and <span class="inline-formula">LAI</span>, the modeling of heat fluxes is noticeably improved, showing higher correlation with observations, lower bias, and more realistic seasonal dynamics of <span class="inline-formula"><i>Q</i><sub>E</sub></span> and <span class="inline-formula"><i>Q</i><sub>H</sub></span>. The effect of the <span class="inline-formula"><i>g</i><sub>max</sub></span> adjustment is more significant than the <span class="inline-formula">LAI</span> adjustment. Compared to heat fluxes, the <span class="inline-formula"><i>F</i><sub>C</sub></span> module shows lower sensitivity to the choices of <span class="inline-formula"><i>g</i><sub>max</sub></span> and <span class="inline-formula">LAI</span>. This can be explained by the low relative contribution of vegetation to the net <span class="inline-formula"><i>F</i><sub>C</sub></span> in the modeled area. SUEWS successfully reproduces the average diurnal cycle of <span class="inline-formula"><i>F</i><sub>C</sub></span> and annual cumulative sums. Depending on the size of the simulation domain, the modeled annual accumulated <span class="inline-formula"><i>F</i><sub>C</sub></span> ranges from 7.4 to 8.7 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">kg</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="007ce286dfe5231fe912e2d2b6c55f1c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-16-4551-2023-ie00001.svg" width="64pt" height="15pt" src="gmd-16-4551-2023-ie00001.png"/></svg:svg></span></span>, compared to 7.5 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">kg</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="edd10d8104028cc3bc1eb02fb28fd8aa"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-16-4551-2023-ie00002.svg" width="64pt" height="15pt" src="gmd-16-4551-2023-ie00002.png"/></svg:svg></span></span> observed by EC. Traffic is the dominant <span class="inline-formula">CO<sub>2</sub></span> source, contributing 59 %–70 % to the annual total <span class="inline-formula">CO<sub>2</sub></span> emissions, followed by human metabolism (14 %–18 %), buildings (11 %–14 %), and <span class="inline-formula">CO<sub>2</sub></span> release by vegetation and soil respiration (6 %–10 %). Vegetation photosynthesis offsets only 5 %–10 % of the total <span class="inline-formula">CO<sub>2</sub></span> emissions. We highlight the importance of choosing the optimal <span class="inline-formula">LAI</span> parameters and <span class="inline-formula"><i>g</i><sub>max</sub></span> when SUEWS is used to model surface fluxes. The <span class="inline-formula"><i>F</i><sub>C</sub></span> module of SUEWS is a promising tool in quantifying urban <span class="inline-formula">CO<sub>2</sub></span> emissions at the local scale and therefore assisting in mitigating urban <span class="inline-formula">CO<sub>2</sub></span> emissions.</p>
first_indexed 2024-03-12T15:28:05Z
format Article
id doaj.art-eb3d1252ff2b47e9835010deec02851a
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-03-12T15:28:05Z
publishDate 2023-08-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-eb3d1252ff2b47e9835010deec02851a2023-08-10T11:05:12ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032023-08-01164551457910.5194/gmd-16-4551-2023Simulating heat and CO<sub>2</sub> fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductanceY. Zheng0Y. Zheng1Y. Zheng2M. Havu3H. Liu4X. Cheng5X. Cheng6Y. Wen7H. S. Lee8H. S. Lee9J. Ahongshangbam10L. Järvi11L. Järvi12State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, ChinaInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00560, FinlandCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100029, ChinaInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00560, FinlandDepartment of Atmospheric Sciences, Yunnan University, Kunming, 650091, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100029, ChinaSchool of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, ChinaInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00560, FinlandHelsinki Institute of Sustainability Science, University of Helsinki, Helsinki, 00560, FinlandInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00560, FinlandInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00560, FinlandHelsinki Institute of Sustainability Science, University of Helsinki, Helsinki, 00560, Finland<p>The Surface Urban Energy and Water Balance Scheme (SUEWS) has recently been introduced to include a bottom-up approach to modeling carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) emissions and uptake in urban areas. In this study, SUEWS is evaluated against the measured eddy covariance (EC) turbulent fluxes of sensible heat (<span class="inline-formula"><i>Q</i><sub>H</sub></span>), latent heat (<span class="inline-formula"><i>Q</i><sub>E</sub></span>), and <span class="inline-formula">CO<sub>2</sub></span> (<span class="inline-formula"><i>F</i><sub>C</sub></span>) in a densely built neighborhood in Beijing. The model sensitivity to maximum conductance (<span class="inline-formula"><i>g</i><sub>max</sub></span>) and leaf area index (<span class="inline-formula">LAI</span>) is examined. Site-specific <span class="inline-formula"><i>g</i><sub>max</sub></span> is obtained from observations over local vegetation species, and <span class="inline-formula">LAI</span> parameters are extracted by optimization with remotely sensed <span class="inline-formula">LAI</span> obtained from a Landsat 7 data product. For the simulation of anthropogenic <span class="inline-formula">CO<sub>2</sub></span> components, local traffic and population data are collected. In the model evaluation, the mismatch between the measurement source area and simulation domain is also considered.</p> <p>Using the optimized <span class="inline-formula"><i>g</i><sub>max</sub></span> and <span class="inline-formula">LAI</span>, the modeling of heat fluxes is noticeably improved, showing higher correlation with observations, lower bias, and more realistic seasonal dynamics of <span class="inline-formula"><i>Q</i><sub>E</sub></span> and <span class="inline-formula"><i>Q</i><sub>H</sub></span>. The effect of the <span class="inline-formula"><i>g</i><sub>max</sub></span> adjustment is more significant than the <span class="inline-formula">LAI</span> adjustment. Compared to heat fluxes, the <span class="inline-formula"><i>F</i><sub>C</sub></span> module shows lower sensitivity to the choices of <span class="inline-formula"><i>g</i><sub>max</sub></span> and <span class="inline-formula">LAI</span>. This can be explained by the low relative contribution of vegetation to the net <span class="inline-formula"><i>F</i><sub>C</sub></span> in the modeled area. SUEWS successfully reproduces the average diurnal cycle of <span class="inline-formula"><i>F</i><sub>C</sub></span> and annual cumulative sums. Depending on the size of the simulation domain, the modeled annual accumulated <span class="inline-formula"><i>F</i><sub>C</sub></span> ranges from 7.4 to 8.7 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">kg</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="007ce286dfe5231fe912e2d2b6c55f1c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-16-4551-2023-ie00001.svg" width="64pt" height="15pt" src="gmd-16-4551-2023-ie00001.png"/></svg:svg></span></span>, compared to 7.5 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">kg</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="edd10d8104028cc3bc1eb02fb28fd8aa"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-16-4551-2023-ie00002.svg" width="64pt" height="15pt" src="gmd-16-4551-2023-ie00002.png"/></svg:svg></span></span> observed by EC. Traffic is the dominant <span class="inline-formula">CO<sub>2</sub></span> source, contributing 59 %–70 % to the annual total <span class="inline-formula">CO<sub>2</sub></span> emissions, followed by human metabolism (14 %–18 %), buildings (11 %–14 %), and <span class="inline-formula">CO<sub>2</sub></span> release by vegetation and soil respiration (6 %–10 %). Vegetation photosynthesis offsets only 5 %–10 % of the total <span class="inline-formula">CO<sub>2</sub></span> emissions. We highlight the importance of choosing the optimal <span class="inline-formula">LAI</span> parameters and <span class="inline-formula"><i>g</i><sub>max</sub></span> when SUEWS is used to model surface fluxes. The <span class="inline-formula"><i>F</i><sub>C</sub></span> module of SUEWS is a promising tool in quantifying urban <span class="inline-formula">CO<sub>2</sub></span> emissions at the local scale and therefore assisting in mitigating urban <span class="inline-formula">CO<sub>2</sub></span> emissions.</p>https://gmd.copernicus.org/articles/16/4551/2023/gmd-16-4551-2023.pdf
spellingShingle Y. Zheng
Y. Zheng
Y. Zheng
M. Havu
H. Liu
X. Cheng
X. Cheng
Y. Wen
H. S. Lee
H. S. Lee
J. Ahongshangbam
L. Järvi
L. Järvi
Simulating heat and CO<sub>2</sub> fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductance
Geoscientific Model Development
title Simulating heat and CO<sub>2</sub> fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductance
title_full Simulating heat and CO<sub>2</sub> fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductance
title_fullStr Simulating heat and CO<sub>2</sub> fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductance
title_full_unstemmed Simulating heat and CO<sub>2</sub> fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductance
title_short Simulating heat and CO<sub>2</sub> fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductance
title_sort simulating heat and co sub 2 sub fluxes in beijing using suews v2020b sensitivity to vegetation phenology and maximum conductance
url https://gmd.copernicus.org/articles/16/4551/2023/gmd-16-4551-2023.pdf
work_keys_str_mv AT yzheng simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance
AT yzheng simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance
AT yzheng simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance
AT mhavu simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance
AT hliu simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance
AT xcheng simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance
AT xcheng simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance
AT ywen simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance
AT hslee simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance
AT hslee simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance
AT jahongshangbam simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance
AT ljarvi simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance
AT ljarvi simulatingheatandcosub2subfluxesinbeijingusingsuewsv2020bsensitivitytovegetationphenologyandmaximumconductance