Brain Organoids to Evaluate Cellular Therapies

Animal models currently used to test the efficacy and safety of cell therapies, mainly murine models, have limitations as molecular, cellular, and physiological mechanisms are often inherently different between species, especially in the brain. Therefore, for clinical translation of cell-based medic...

Full description

Bibliographic Details
Main Authors: Ana Belén García-Delgado, Rafael Campos-Cuerva, Cristina Rosell-Valle, María Martin-López, Carlos Casado, Daniela Ferrari, Javier Márquez-Rivas, Rosario Sánchez-Pernaute, Beatriz Fernández-Muñoz
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/12/22/3150
Description
Summary:Animal models currently used to test the efficacy and safety of cell therapies, mainly murine models, have limitations as molecular, cellular, and physiological mechanisms are often inherently different between species, especially in the brain. Therefore, for clinical translation of cell-based medicinal products, the development of alternative models based on human neural cells may be crucial. We have developed an in vitro model of transplantation into human brain organoids to study the potential of neural stem cells as cell therapeutics and compared these data with standard xenograft studies in the brain of immunodeficient NOD.Cg-<i>Prkdc<sup>scid</sup> Il2rg<sup>tm1Wjl</sup></i>/SzJ (NSG) mice. Neural stem cells showed similar differentiation and proliferation potentials in both human brain organoids and mouse brains. Our results suggest that brain organoids can be informative in the evaluation of cell therapies, helping to reduce the number of animals used for regulatory studies.
ISSN:2076-2615