Single Image Dehazing Using Sparse Contextual Representation
In this paper, we propose a novel method to remove haze from a single hazy input image based on the sparse representation. In our method, the sparse representation is proposed to be used as a contextual regularization tool, which can reduce the block artifacts and halos produced by only using dark c...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Atmosphere |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4433/12/10/1266 |
Summary: | In this paper, we propose a novel method to remove haze from a single hazy input image based on the sparse representation. In our method, the sparse representation is proposed to be used as a contextual regularization tool, which can reduce the block artifacts and halos produced by only using dark channel prior without soft matting as the transmission is not always constant in a local patch. A novel way to use dictionary is proposed to smooth an image and generate the sharp dehazed result. Experimental results demonstrate that our proposed method performs favorably against the state-of-the-art dehazing methods and produces high-quality dehazed and vivid color results. |
---|---|
ISSN: | 2073-4433 |