Possibility to Estimate Same Day Energy Status of Dairy Cows during First Half of Lactation by Non-Invasive Markers with Emphasis to Milk Fatty Acids

Postpartum negative energy balance (NEB) is detrimental to cows and decreases profitability in dairy farming. The two origins of milk fatty acids (FA), de novo synthesized in the mammary gland and plasma lipids initially originating from feed, rumen microbes and the animal’s adipose tissue, make mil...

Full description

Bibliographic Details
Main Authors: Tiia Ariko, Tanel Kaart, Katri Ling, Merike Henno, Hanno Jaakson, Meelis Ots
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/13/14/2370
Description
Summary:Postpartum negative energy balance (NEB) is detrimental to cows and decreases profitability in dairy farming. The two origins of milk fatty acids (FA), de novo synthesized in the mammary gland and plasma lipids initially originating from feed, rumen microbes and the animal’s adipose tissue, make milk FA candidates as possible NEB biomarkers. The aim of this study was to assess the possibility to predict EB in cows in the first 150 days of lactation with BCS, milk traits and selected individual milk FA and the ratios of blood-derived and de novo synthesized FA. The daily EB of Estonian Holstein cows (N = 30) was calculated based on body weights and BCS values. Milk FA were analyzed with gas chromatography. The variance partitioning analysis revealed that milk production traits, BCS at calving, FA ratios and days in milk accounted for 67.1% of the EB variance. Random forest analysis indicated the highest impact of the ratios C18:1cis9/C12:0+C14:0, C18:1cis9+C18:0/C12:0+C14:0, C18:1cis9/C14:0, C18:1cis9+C18:0/C14:0, C18:1cis9/sum C5:0 to C14:0, C18:1cis9+C18:0/sum C5:0 to C14:0 or C18:1cis9/C15:0. FA and their ratios alone explained 63.6% of the EB variance, indicating the possibility to use milk FA and their ratios as sole predictors for the energy status in dairy cows.
ISSN:2076-2615