Summary: | There are treatments available for enamel demineralization or acid erosion, but they have limitations. We aimed to manufacture a device that could directly form a hydroxyapatite (HAp) film coating on the enamel with a chairside erbium-doped yttrium aluminum garnet (Er:YAG) laser using the pulsed laser deposition (PLD) method for repairing enamel defects. We used decalcified bovine enamel specimens and compacted α-tricalcium phosphate (α-TCP) as targets of Er:YAG-PLD. With irradiation, an α-TCP coating layer was immediately deposited on the specimen surface. The morphological, mechanical, and chemical characteristics of the coatings were evaluated using scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray diffractometry (XRD), and a micro-Vickers hardness tester. Wear resistance, cell attachment of the HAp coatings, and temperature changes during the Er:YAG-PLD procedure were also observed. SEM demonstrated that the α-TCP powder turned into microparticles by irradiation. XRD peaks revealed that the coatings were almost hydrolyzed into HAp within 2 days. Micro-Vickers hardness indicated that the hardness lost by decalcification was almost recovered by the coatings. The results suggest that the Er:YAG-PLD technique is useful for repairing enamel defects and has great potential for future clinical applications.
|