Study of the microstructure and mechanical properties of beta tricalcium phosphate-based composites with alumina addition produced by powder metallurgy
Abstract The use of alumina as a reinforcement in metallic and ceramic matrix is well-known. The purpose of this study was to investigate the effect of alumina addition according to its amount on the microstructural and mechanical behavior of tricalcium phosphate ceramic (TCP), more specifically the...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Fundação Gorceix
|
Series: | REM: International Engineering Journal |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2017000400459&lng=en&tlng=en |
_version_ | 1818559089478729728 |
---|---|
author | Bruna Horta Bastos Kuffner Andreia Ditzel Facci Daniela Sachs Gilbert Silva |
author_facet | Bruna Horta Bastos Kuffner Andreia Ditzel Facci Daniela Sachs Gilbert Silva |
author_sort | Bruna Horta Bastos Kuffner |
collection | DOAJ |
description | Abstract The use of alumina as a reinforcement in metallic and ceramic matrix is well-known. The purpose of this study was to investigate the effect of alumina addition according to its amount on the microstructural and mechanical behavior of tricalcium phosphate ceramic (TCP), more specifically the β-TCP. Although β-TCP has excellent bioactive and biocompatible properties, it presents low fracture resistance and load bearing capacity, which limits its use in the monolithic form. The route used for the β-TCP/alumina composite production was powder metallurgy. The powders were milled in a high energy ball mill with the following parameters: 5, 10, 15 and 20 hours, mass/sphere relation of 1:20 and speed of 150 rpm. After the milling process, the powders of both compositions were uniaxially pressed and sintered. Two of the compositions were processed containing 90% and 50% of β-TCP, respectively. The results indicated that composition 1 with a smaller percentage of alumina in its microstructure presented 62.4 % smaller particle size after the high energy ball milling process, which provided higher densification after pressing and sintering. These results implied in increased mechanical resistance, with 4.6 GPa of elastic modulus and 140 MPa of compressive strength, against 3.6 GPa of elastic modulus and 117 MPa of compressive strength obtained in composition 2. |
first_indexed | 2024-12-14T00:20:49Z |
format | Article |
id | doaj.art-eb724a9a7eb945cc9a4a79e71e4644ee |
institution | Directory Open Access Journal |
issn | 2448-167X |
language | English |
last_indexed | 2024-12-14T00:20:49Z |
publisher | Fundação Gorceix |
record_format | Article |
series | REM: International Engineering Journal |
spelling | doaj.art-eb724a9a7eb945cc9a4a79e71e4644ee2022-12-21T23:25:13ZengFundação GorceixREM: International Engineering Journal2448-167X70445946410.1590/0370-44672017700082S2448-167X2017000400459Study of the microstructure and mechanical properties of beta tricalcium phosphate-based composites with alumina addition produced by powder metallurgyBruna Horta Bastos KuffnerAndreia Ditzel FacciDaniela SachsGilbert SilvaAbstract The use of alumina as a reinforcement in metallic and ceramic matrix is well-known. The purpose of this study was to investigate the effect of alumina addition according to its amount on the microstructural and mechanical behavior of tricalcium phosphate ceramic (TCP), more specifically the β-TCP. Although β-TCP has excellent bioactive and biocompatible properties, it presents low fracture resistance and load bearing capacity, which limits its use in the monolithic form. The route used for the β-TCP/alumina composite production was powder metallurgy. The powders were milled in a high energy ball mill with the following parameters: 5, 10, 15 and 20 hours, mass/sphere relation of 1:20 and speed of 150 rpm. After the milling process, the powders of both compositions were uniaxially pressed and sintered. Two of the compositions were processed containing 90% and 50% of β-TCP, respectively. The results indicated that composition 1 with a smaller percentage of alumina in its microstructure presented 62.4 % smaller particle size after the high energy ball milling process, which provided higher densification after pressing and sintering. These results implied in increased mechanical resistance, with 4.6 GPa of elastic modulus and 140 MPa of compressive strength, against 3.6 GPa of elastic modulus and 117 MPa of compressive strength obtained in composition 2.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2017000400459&lng=en&tlng=enbeta tricalcium phosphatealuminacompositespowder metallurgy |
spellingShingle | Bruna Horta Bastos Kuffner Andreia Ditzel Facci Daniela Sachs Gilbert Silva Study of the microstructure and mechanical properties of beta tricalcium phosphate-based composites with alumina addition produced by powder metallurgy REM: International Engineering Journal beta tricalcium phosphate alumina composites powder metallurgy |
title | Study of the microstructure and mechanical properties of beta tricalcium phosphate-based composites with alumina addition produced by powder metallurgy |
title_full | Study of the microstructure and mechanical properties of beta tricalcium phosphate-based composites with alumina addition produced by powder metallurgy |
title_fullStr | Study of the microstructure and mechanical properties of beta tricalcium phosphate-based composites with alumina addition produced by powder metallurgy |
title_full_unstemmed | Study of the microstructure and mechanical properties of beta tricalcium phosphate-based composites with alumina addition produced by powder metallurgy |
title_short | Study of the microstructure and mechanical properties of beta tricalcium phosphate-based composites with alumina addition produced by powder metallurgy |
title_sort | study of the microstructure and mechanical properties of beta tricalcium phosphate based composites with alumina addition produced by powder metallurgy |
topic | beta tricalcium phosphate alumina composites powder metallurgy |
url | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2017000400459&lng=en&tlng=en |
work_keys_str_mv | AT brunahortabastoskuffner studyofthemicrostructureandmechanicalpropertiesofbetatricalciumphosphatebasedcompositeswithaluminaadditionproducedbypowdermetallurgy AT andreiaditzelfacci studyofthemicrostructureandmechanicalpropertiesofbetatricalciumphosphatebasedcompositeswithaluminaadditionproducedbypowdermetallurgy AT danielasachs studyofthemicrostructureandmechanicalpropertiesofbetatricalciumphosphatebasedcompositeswithaluminaadditionproducedbypowdermetallurgy AT gilbertsilva studyofthemicrostructureandmechanicalpropertiesofbetatricalciumphosphatebasedcompositeswithaluminaadditionproducedbypowdermetallurgy |