A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space

<p/> <p>The purpose of this paper is to propose a modified hybrid projection algorithm and prove a strong convergence theorem for a family of quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i2.gif"/></inline-formula>-nonexpansive mappings. The stro...

Full description

Bibliographic Details
Main Authors: Gao Xinghui, Zhou Haiyun
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2009/351265
_version_ 1818738093711163392
author Gao Xinghui
Zhou Haiyun
author_facet Gao Xinghui
Zhou Haiyun
author_sort Gao Xinghui
collection DOAJ
description <p/> <p>The purpose of this paper is to propose a modified hybrid projection algorithm and prove a strong convergence theorem for a family of quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i2.gif"/></inline-formula>-nonexpansive mappings. The strong convergence theorem is proven in the more general reflexive, strictly convex, and smooth Banach spaces with the property (K). The results of this paper improve and extend the results of S. Matsushita and W. Takahashi (2005), X. L. Qin and Y. F. Su (2007), and others.</p>
first_indexed 2024-12-18T01:03:28Z
format Article
id doaj.art-eb8ba34250ab448f8b1245f1487517b9
institution Directory Open Access Journal
issn 1687-1820
1687-1812
language English
last_indexed 2024-12-18T01:03:28Z
publishDate 2009-01-01
publisher SpringerOpen
record_format Article
series Fixed Point Theory and Applications
spelling doaj.art-eb8ba34250ab448f8b1245f1487517b92022-12-21T21:26:19ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122009-01-0120091351265A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach SpaceGao XinghuiZhou Haiyun<p/> <p>The purpose of this paper is to propose a modified hybrid projection algorithm and prove a strong convergence theorem for a family of quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i2.gif"/></inline-formula>-nonexpansive mappings. The strong convergence theorem is proven in the more general reflexive, strictly convex, and smooth Banach spaces with the property (K). The results of this paper improve and extend the results of S. Matsushita and W. Takahashi (2005), X. L. Qin and Y. F. Su (2007), and others.</p>http://www.fixedpointtheoryandapplications.com/content/2009/351265
spellingShingle Gao Xinghui
Zhou Haiyun
A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space
Fixed Point Theory and Applications
title A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space
title_full A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space
title_fullStr A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space
title_full_unstemmed A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space
title_short A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space
title_sort strong convergence theorem for a family of quasi inline formula graphic file 1687 1812 2009 351265 i1 gif inline formula nonexpansive mappings in a banach space
url http://www.fixedpointtheoryandapplications.com/content/2009/351265
work_keys_str_mv AT gaoxinghui astrongconvergencetheoremforafamilyofquasiinlineformulagraphicfile168718122009351265i1gifinlineformulanonexpansivemappingsinabanachspace
AT zhouhaiyun astrongconvergencetheoremforafamilyofquasiinlineformulagraphicfile168718122009351265i1gifinlineformulanonexpansivemappingsinabanachspace
AT gaoxinghui strongconvergencetheoremforafamilyofquasiinlineformulagraphicfile168718122009351265i1gifinlineformulanonexpansivemappingsinabanachspace
AT zhouhaiyun strongconvergencetheoremforafamilyofquasiinlineformulagraphicfile168718122009351265i1gifinlineformulanonexpansivemappingsinabanachspace