A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space
<p/> <p>The purpose of this paper is to propose a modified hybrid projection algorithm and prove a strong convergence theorem for a family of quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i2.gif"/></inline-formula>-nonexpansive mappings. The stro...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2009/351265 |
_version_ | 1818738093711163392 |
---|---|
author | Gao Xinghui Zhou Haiyun |
author_facet | Gao Xinghui Zhou Haiyun |
author_sort | Gao Xinghui |
collection | DOAJ |
description | <p/> <p>The purpose of this paper is to propose a modified hybrid projection algorithm and prove a strong convergence theorem for a family of quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i2.gif"/></inline-formula>-nonexpansive mappings. The strong convergence theorem is proven in the more general reflexive, strictly convex, and smooth Banach spaces with the property (K). The results of this paper improve and extend the results of S. Matsushita and W. Takahashi (2005), X. L. Qin and Y. F. Su (2007), and others.</p> |
first_indexed | 2024-12-18T01:03:28Z |
format | Article |
id | doaj.art-eb8ba34250ab448f8b1245f1487517b9 |
institution | Directory Open Access Journal |
issn | 1687-1820 1687-1812 |
language | English |
last_indexed | 2024-12-18T01:03:28Z |
publishDate | 2009-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Fixed Point Theory and Applications |
spelling | doaj.art-eb8ba34250ab448f8b1245f1487517b92022-12-21T21:26:19ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122009-01-0120091351265A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach SpaceGao XinghuiZhou Haiyun<p/> <p>The purpose of this paper is to propose a modified hybrid projection algorithm and prove a strong convergence theorem for a family of quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i2.gif"/></inline-formula>-nonexpansive mappings. The strong convergence theorem is proven in the more general reflexive, strictly convex, and smooth Banach spaces with the property (K). The results of this paper improve and extend the results of S. Matsushita and W. Takahashi (2005), X. L. Qin and Y. F. Su (2007), and others.</p>http://www.fixedpointtheoryandapplications.com/content/2009/351265 |
spellingShingle | Gao Xinghui Zhou Haiyun A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space Fixed Point Theory and Applications |
title | A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space |
title_full | A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space |
title_fullStr | A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space |
title_full_unstemmed | A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space |
title_short | A Strong Convergence Theorem for a Family of Quasi-<inline-formula> <graphic file="1687-1812-2009-351265-i1.gif"/></inline-formula>-Nonexpansive Mappings in a Banach Space |
title_sort | strong convergence theorem for a family of quasi inline formula graphic file 1687 1812 2009 351265 i1 gif inline formula nonexpansive mappings in a banach space |
url | http://www.fixedpointtheoryandapplications.com/content/2009/351265 |
work_keys_str_mv | AT gaoxinghui astrongconvergencetheoremforafamilyofquasiinlineformulagraphicfile168718122009351265i1gifinlineformulanonexpansivemappingsinabanachspace AT zhouhaiyun astrongconvergencetheoremforafamilyofquasiinlineformulagraphicfile168718122009351265i1gifinlineformulanonexpansivemappingsinabanachspace AT gaoxinghui strongconvergencetheoremforafamilyofquasiinlineformulagraphicfile168718122009351265i1gifinlineformulanonexpansivemappingsinabanachspace AT zhouhaiyun strongconvergencetheoremforafamilyofquasiinlineformulagraphicfile168718122009351265i1gifinlineformulanonexpansivemappingsinabanachspace |