Variation-Difference Method of Calculation of Layered Rubber-Metal Vibration Isolators Used for Protection of Reinforced Concrete Buildings from Anthropogenic Vibration

In the modern construction complex of the city of Moscow for the protection of buildings and structures from man-made vibration arising from the movement of trains of rail transportation (subway trains, railroad lines and trams). To protect buildings and structures from anthropogenic vibration arisi...

Full description

Bibliographic Details
Main Author: D. K. Sizov
Format: Article
Language:English
Published: Moscow State University of Civil Engineering (MGSU) 2024-02-01
Series:Железобетонные конструкции
Subjects:
Online Access:https://www.g-b-k.ru/jour/article/view/44
_version_ 1797261540052697088
author D. K. Sizov
author_facet D. K. Sizov
author_sort D. K. Sizov
collection DOAJ
description In the modern construction complex of the city of Moscow for the protection of buildings and structures from man-made vibration arising from the movement of trains of rail transportation (subway trains, railroad lines and trams). To protect buildings and structures from anthropogenic vibration arising from the movement of rail transport trains (subway trains, railroad lines and streetcars), Moscow uses layered rubber-metal vibration isolators [1]. Most often, to determine their static and dynamic characteristics, the finite element method (FEM) is used, which makes it possible to determine all components of the stress-strain state and frequencies of free oscillations in the loaded state practically for any structural forms of isolators. However, for the most popular software packages that implement FEM, the problem of optimizing the structural shape of the vibration isolator still requires significant time expenditures for multiple changes of the finite element mesh, repeated setting of boundary conditions and implementation of a series of calculations. Only some of the software packages implementing the FEM solve optimization problems of the shape of the product being calculated, most often it is related to foreign software products with universal functionality. Variation-difference method (VDM) is the closest to the finite element method (FEM) in terms of its computational capabilities. It is possible to create program modules that repeatedly and automatically solve three-dimensional problems of elasticity theory taking into account the changed geometry of the vibration isolator: the dimensions of the product, the location of perforations within the rubber layers, as well as the thickness of the rubber layer and other parameters important for obtaining an effective technical solution for vibration isolation of buildings. Further, the article describes the method of implementation of the variational-difference method (VDM) as applied to the solution of the problem of determining the components of the stress-strain state inside a three-dimensional layered vibration isolator with perforations of different sizes having different locations relative to the contour of the vibration isolator, i.e., the solution of the problem of optimizing the three-dimensional shape of the vibration isolator is given.
first_indexed 2024-04-24T23:42:50Z
format Article
id doaj.art-eb8f2737e01f4fa5bad15a2bc60523e3
institution Directory Open Access Journal
issn 2949-1622
2949-1614
language English
last_indexed 2024-04-24T23:42:50Z
publishDate 2024-02-01
publisher Moscow State University of Civil Engineering (MGSU)
record_format Article
series Железобетонные конструкции
spelling doaj.art-eb8f2737e01f4fa5bad15a2bc60523e32024-03-15T11:07:48ZengMoscow State University of Civil Engineering (MGSU)Железобетонные конструкции2949-16222949-16142024-02-0151687810.22227/2949-1622.2024.1.68-7841Variation-Difference Method of Calculation of Layered Rubber-Metal Vibration Isolators Used for Protection of Reinforced Concrete Buildings from Anthropogenic VibrationD. K. Sizov0OOO "Vibroseismozastchita"; Moscow State University of Civil Engineering (National Research University) (MGSU)In the modern construction complex of the city of Moscow for the protection of buildings and structures from man-made vibration arising from the movement of trains of rail transportation (subway trains, railroad lines and trams). To protect buildings and structures from anthropogenic vibration arising from the movement of rail transport trains (subway trains, railroad lines and streetcars), Moscow uses layered rubber-metal vibration isolators [1]. Most often, to determine their static and dynamic characteristics, the finite element method (FEM) is used, which makes it possible to determine all components of the stress-strain state and frequencies of free oscillations in the loaded state practically for any structural forms of isolators. However, for the most popular software packages that implement FEM, the problem of optimizing the structural shape of the vibration isolator still requires significant time expenditures for multiple changes of the finite element mesh, repeated setting of boundary conditions and implementation of a series of calculations. Only some of the software packages implementing the FEM solve optimization problems of the shape of the product being calculated, most often it is related to foreign software products with universal functionality. Variation-difference method (VDM) is the closest to the finite element method (FEM) in terms of its computational capabilities. It is possible to create program modules that repeatedly and automatically solve three-dimensional problems of elasticity theory taking into account the changed geometry of the vibration isolator: the dimensions of the product, the location of perforations within the rubber layers, as well as the thickness of the rubber layer and other parameters important for obtaining an effective technical solution for vibration isolation of buildings. Further, the article describes the method of implementation of the variational-difference method (VDM) as applied to the solution of the problem of determining the components of the stress-strain state inside a three-dimensional layered vibration isolator with perforations of different sizes having different locations relative to the contour of the vibration isolator, i.e., the solution of the problem of optimizing the three-dimensional shape of the vibration isolator is given.https://www.g-b-k.ru/jour/article/view/44vibration isolationfinite element methodvariational-difference methodrubber-metal vibration isolatortechnogenic vibrations
spellingShingle D. K. Sizov
Variation-Difference Method of Calculation of Layered Rubber-Metal Vibration Isolators Used for Protection of Reinforced Concrete Buildings from Anthropogenic Vibration
Железобетонные конструкции
vibration isolation
finite element method
variational-difference method
rubber-metal vibration isolator
technogenic vibrations
title Variation-Difference Method of Calculation of Layered Rubber-Metal Vibration Isolators Used for Protection of Reinforced Concrete Buildings from Anthropogenic Vibration
title_full Variation-Difference Method of Calculation of Layered Rubber-Metal Vibration Isolators Used for Protection of Reinforced Concrete Buildings from Anthropogenic Vibration
title_fullStr Variation-Difference Method of Calculation of Layered Rubber-Metal Vibration Isolators Used for Protection of Reinforced Concrete Buildings from Anthropogenic Vibration
title_full_unstemmed Variation-Difference Method of Calculation of Layered Rubber-Metal Vibration Isolators Used for Protection of Reinforced Concrete Buildings from Anthropogenic Vibration
title_short Variation-Difference Method of Calculation of Layered Rubber-Metal Vibration Isolators Used for Protection of Reinforced Concrete Buildings from Anthropogenic Vibration
title_sort variation difference method of calculation of layered rubber metal vibration isolators used for protection of reinforced concrete buildings from anthropogenic vibration
topic vibration isolation
finite element method
variational-difference method
rubber-metal vibration isolator
technogenic vibrations
url https://www.g-b-k.ru/jour/article/view/44
work_keys_str_mv AT dksizov variationdifferencemethodofcalculationoflayeredrubbermetalvibrationisolatorsusedforprotectionofreinforcedconcretebuildingsfromanthropogenicvibration